سازگاری حرارتی به عنوان شاخص نهایی سنجش کیفیت سایه اندازی سایبانهای خارجی نمونه مورد مطالعه : ساختمان مسکونی در شیراز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری، پردیس بین المللی کیش، دانشگاه تهران، کیش، ایران.

2 استاد گروه معماری، دانشکده معماری دانشکدگان هنرهای زیبا، دانشگاه تهران، تهران، ایران.

3 استادیار گروه معماری، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

سایبان‌های خارجی یکی از اجزای بسیار مهم و کاربردی در طراحی معماری پایدار به ویژه در اقلیم‌های گرم هستند که تاثیر زیادی بر کنترل مصرف منابع انرژی برای کاربردهایی چون بار حرارتی، نور روز و آسایش حرارتی دارند که به نظر می‌رسد کمتر تحقیقی در مورد تاثیر کیفیت سایه‌اندازی بر این عملکردها به ویژه بر سازگاری حرارتی انجام شده باشد. برای این منظور، این مقاله با کمک برداشت‌های میدانی از یک ساختمان مسکونی در شیراز و شبیه‌سازی و اعتبار‌سنجی آن و سپس تولید یک سایبان پارامتریک خلاقانه با قابلیت تولید سایه‌اندازی‌های متنوع و در نهایت با استفاده از تکنیک نمونه برداری LHS و همچنین استفاده از شبکه عصبی مصنوعی و بهینه‌سازی چند هدفه با الگوریتم NSGA III توانسته است نمونه‌های سایبانی بهینه‌ای را تولید کند که در نهایت بر مبنای میزان سازگاری حرارتی طبقه‌بندی شده‌اند. این طبقه‌بندی نشان می‌دهد که در سایبان‌های بهینه با وجود اینکه شاخص‌های نور روز در محدوده استاندارد هستند و می‌توانند 53% تا 73% در بار سرمایشی و 8% تا 10% نیز در بار گرمایشی صرفه‌جویی ایجاد کنند اما مدت زمان تامین آسایش حرارتی توسط آنها بین 4 تا 8 ماه متغیر است که این خود نشان دهنده اهمیت تاثیر کیفیت سایبان‌ها بر آسایش حرارتی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Adaptive thermal comfort as the final metric for evaluating the quality of the exterior shading on building envelopes The case study: a residential building in Shiraz, Iran

نویسندگان [English]

  • NILOOFAR HASHEMI 1
  • shahin Heidari 2
  • Morteza Rahbar 3
1 Phd Candidate of Architecture, Department of Architecture, Kish International Campus, University of Tehran, Kish, Iran.
2  Professor, Department of Architecture, School of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran.
3 Assistant Professor, Faculty of Architecture and Urban Planning, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

  One of the main problems in the world is global warming, which is caused by the building sector and carbon emissions. Researchers have come to the conclusion that managing and reducing building energy consumptions and promoting sustainable building practices are crucial. Particularly in hot areas, exterior shading devices are one of the most significant and useful criteria for sustainable passive architecture design. They can have an impact on managing the building's energy resources, including thermal load, daylight, and adaptive thermal comfort. The application of the shadings is highly effective when shading design parameters have carefully and accurately been studied and designed because an inefficient shading device can easily increase the thermal load and create glare or darkness at the same time, or while keeping daylight indicators within the standard range, increase energy consumptions. Although many studies have investigated the design parameters of exterior shading devices including dimensions, materials, and the location of installation through optimization methods, it seems that none of the researches have considered the effect of shade quality on building performances. To investigate the quality of shading, through field measurement in a residential building in Shiraz, Iran, a model was simulated and validated and then a novel parametric exterior fixed shading device added to the model was created in grasshopper plugin which was able to produce a variety range of shadings. A large dataset of 13600 samples of the parametric shading was produced by applying the LHS technique, which created an outspread community of shading samples and executed the energy simulation for each sample. Then this large data set was used to train and test an Artificial Neural Network (ANN). This ANN was applied as a fast emulator and the searching space for multi-objective optimization through NSGA_III algorithm. The major goals in the optimization process are considered to be the least cooling and heating load, the minimum annual sun exposure (ASE), the maximum spatial daylight autonomy (sDA), and the minimum useful daylight illumination (UDI). These five functions are considered as independent variables. Finally, using an adaptive thermal comfort model, the Pareto front solutions have been categorized based on the Percent of Time Comfortable (PTC). This classification clearly demonstrates that although the optimized shading devices can keep the daylight standard indicators (ASE, sDA, and UDI) within acceptable ranges and reduce the cooling load from 53% to 73% and the heating load by from 8% to 10%, the values of PTC could vary by as much as 33.3% (i.e. 4 months of the year) to 66.67% (i.e. 8 months of the year). This range in PTC value is significant because, although certain optimal shading devices can maintain the PTC in interior spaces at 33.3%, other cases with the same rate of energy saving and daylight standard indicators can raise the PTC value to 66.67%. Therefore, this paper introduces the PTC in adaptive thermal comfort model as a new metric for evaluating the quality of the shading produced by any shading device types.

کلیدواژه‌ها [English]

  • Parametric Shading Devices
  • Latin Hypercube Sampling Technique
  • Artificial Neural Network
  • Multi-Objective Optimization
  • Adaptive Thermal Comfort
حیدری شاهین (1393)، سازگاری حرارتی در معماری (نخستین قدم در صرفه جویی مصرف انرژی)، چاپ اول، دانشگاه تهران، تهران.
طرح تفضیلی شیراز، ضوابط و مقررات شهرسازی و ساختمانی، مهندسان مشاور برنامه ریز، شهر ساز و معمار شهر و خانه، 1393. ASHRAE 55-2010: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta.
Thermal Environmental Conditions for Human Occupancy. ASHRAE 55 (2010) ASHRAE Standard 55-2010.
ASHRAE 14-2014: American Society of Heating, Ventilating, and Air Conditioning Engineers (ASHRAE).
Guideline 14-2014, Measurement of Energy and Demand Savings; Technical Report; American Society of Heating, Ventilating, and Air Conditioning Engineers: Atlanta, GA, USA, 2014.
ASHRAE 14-2002: American Society of Heating, Refrigeration and Air Conditioning Engineers, ASHRAE Guideline 14-2002 for Measurement of Energy and Demand Savings, , Atlanta, GA.
Amini R, Ghaffarianhoseini A, Ghaffarianhoseini A, Berardi U. Numerical investigation of indoor thermal comfort and air quality for a multi-purpose hall with various shading and glazing ratios. Thermal Science and Engineering Progress. 2021 May 1;22:100812.
Andelkovic AS, Mujan I, Dakić S. Experimental validation of a EnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings. 2016 Apr 15;118:27-36.
Arbab M, Rahbar M, Arbab M. A Comparative Study of Artificial Intelligence Models for Predicting Interior Illuminance. Applied Artificial Intelligence. 2021 Apr 16;35(5):373-92.
Asadi E, da Silva MG, Antunes CH, Dias L, Glicksman L. Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy Build 2014;81:444–56.
Ascione F, Bianco N, Mauro GM, Vanoli GP. A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin. Appl Energy 2019;241:331–61.
Baldinelli G. Double skin façades for warm climate regions: Analysis of a solution with an integrated movable shading system. 2009, Building and Environment 44(6):1107-1118 doi:10.1016/j.buildenv.2008.08.005
Bessoudo M, Tzempelikos A, Athienitis AK, Zmeureanu R. Indoor thermal environmental conditions near glazed facades with shading devices–Part I: Experiments and building thermal model. Building and environment. 2010 Nov 1;45(11):2506-16. https://doi.org/10.1016/j.buildenv.2010.05.013.
Calama-Gonzalez CM, Suárez R, León-Rodríguez ÁL. Thermal comfort prediction of the existing housing stock in southern Spain through calibrated and validated parameterized simulation models. Energy and Buildings. 2022 Jan 1;254:111562. Calixto-Aguirre I, Huelsz G, Barrios G, Cruz-Salas MV. Validation of thermal simulations of a non-air-conditioned office building in different seasonal, occupancy and ventilation conditions. Journal of Building Engineering. 2021 Dec 1;44:102922.
Carletti C, Sciurpi F, Pierangioli L, Asdrubali F, Pisello AL, Bianchi F, Sambuco S, Guattari C. Thermal and lighting effects of an external venetian blind: Experimental analysis in a full scale test room. Building and Environment. 2016 Sep 1;106:45-56.https://doi.org/10.1016/j.buildenv.2016.06.017.
Carlucci S, Cattarin G, Causone F, Pagliano L. Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II). Energy Build 2015;104:378–94.
Chatzikonstantinou I, Sariyildiz S, Bittermann MS. Conceptual airport terminal design using evolutionary computation. In: 2015 IEEE congress on evolutionary computation; 2015. p. 2245–52.
Cho J, Yoo C, Kim Y. Viability of exterior shading devices for high-rise residential buildings: Case study for cooling energy saving and economic feasibility analysis. Energy and Buildings. 2014 Oct 1;82:771-85.
Chollet F. Keras [WWW Document]. GitHub. URL https://github. com/fchollet/keras. 2015.
Chua KJ, Chou SK. Evaluating the performance of shading devices and glazing types to promote energy efficiency of residential buildings. InBuilding Simulation 2010 Sep (Vol. 3, No. 3, pp. 181-194). Springer Berlin Heidelberg.https://doi.org/10.1007/s12273-010-0007-2.
Ciro GC, Dugardin F, Yalaoui F, Kelly R. A NSGA-II and NSGA-III comparison for solving an open shop scheduling problem with resource constraints. IFAC-PapersOnLine 2016; 49(12): 1272–7.
Coakley D, Raftery P, Molloy P. Calibration of whole building energy simulation models: detailed case study of a naturally ventilated building using hourly measured data, Proceedings First Building Simulation and Optimization Conference (2012) 57–64.
da Fonseca RW, Didoné EL, Pereira FO. Using artificial neural networks to predict the impact of daylighting on building final electric energy requirements. Energy and Buildings. 2013 Jun 1;61:31-8. doi: 10.1016/j.enbuild.2013.02.009. Dahanayake KK, Chow CL. Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program. Energy and Buildings. 2017 Mar 1;138:47-59.doi:10.1016/j.enbuild.2016.12.002.
Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 2013;18(4):577–601.
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182–97.
Eltaweel A, Su Y. (2017). Controlling venetian blinds based on parametric design; via implementing Grasshopper’s plugins: A case study of an office building in Cairo. Energy and Buildings, 139, 31–43.
doi:10.1016/j.enbuild.2016.12.075
Emmerich MT, Deutz AH. A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat Comput 2018; 17(3):585–609.
Fang Y, Cho S. Design optimization of building geometry and fenestration for daylighting and energy performance. Solar Energy. 2019 Oct 1;191:7-18. doi: 10.1016/j.solener.2019.08.039.
Hall MR. 2010. Materials for Energy Efficiency and Thermal Comfort in Buildings. Woodhead Publishing Series in Energy, eBook ISBN: 9781845699277.
Hashemi N, Fayaz R, Sarshar M. Thermal behaviour of a ventilated double skin facade in hot arid climate, Energy and Buildings, Volume 42, Issue 10, 2010, Pages 1823-1832, ISSN 0378-7788.
Hossain MU, Poon CS. Global warming potential and energy consumption of temporary works in building construction: A case study in Hong Kong. Building and Environment. 2018 Sep 1;142:171-9. https://doi.org/10.1016/j.buildenv.2018.06.026.
Jayathissa P, Luzzatto M, Schmidli J, Hofer J, Nagy Z, Schlueter A. Optimising building net energy demand with dynamic BIPV shading. Applied Energy. 2017 Sep 15;202:726-35.
Karaman S, Ekici B, Cubukcuoglu C, Koyunbaba BK, Kahraman I. Design of rectangular façade modules through computational intelligence. In: 2017 IEEE congress on evolutionary computation; 2017. p. 1021–8.
Khoroshiltseva M, Slanzi D, Poli I. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices. Applied energy. 2016 Dec 15;184:1400-10.
Kirimtat A, Koyunbaba BK, Chatzikonstantinou I, Sariyildiz S, Suganthan PN. Multi-objective optimization for shading devices in buildings by using evolutionary algorithms. 2016 IEEE Congress on Evolutionary Computation (CEC). doi:10.1109/cec.2016.7744286
Kirimtat A, Koyunbaba BK, Chatzikonstantinou I, Sariyildiz S. Review of simulation modeling for shading devices in buildings. Renew. Sustain. Energy Rev., vol. 53, pp. 23–49, Jan. 2016. doi: 10.1016/j.rser.2015.08.020.
Kirimtat A, Krejcar O, Ekici B, Tasgetiren MF. Multi-objective energy and daylight optimization of amorphous shading devices in buildings. Solar Energy. 2019 Jun 1;185:100-11.
Levy S, Steinberg DM. Computer experiments: a review. AStA Advances in Statistical Analysis. 2010 Dec;94(4):311-24. doi:10.1016/j.ress.2015.12.002
Lim YW, Kandar MZ, Ahmad MH, Ossen DR, Abdullah AM. Building façade design for daylighting quality in typical government office building. Building and Environment. 2012 Nov 1;57:194-204. https://doi.org/10.1016/j.buildenv.2012.04.015.
Liu S, Kwok YT, Lau KK, Chan PW, Ng E. Investigating the energy saving potential of applying shading panels on opaque façades: A case study for residential buildings in Hong Kong. Energy and Buildings. 2019 Jun 15;193:78-91. https://doi.org/10.1016/j.enbuild.2019.03.044.
Loeppky JL, Sacks J, Welch WJ. Choosing the sample size of a computer experiment: A practical guide. Technometrics. 2009 Nov 1;51(4):366-76. http://dx.doi.org/10.1198/TECH.2009.08040
Mandalaki M, Zervas K, Tsoutsos T, Vazakas A. Assessment of fixed shading devices with integrated PV for efficient energy use. Solar Energy. 2012 Sep 1;86(9):2561-75. doi:10.1016/j.solener.2012.05.026
Mangkuto RA, Feradi F, Putra RE, Atmodipoero RT, Favero F. (2018). Optimisation of daylight admission based on modifications of light shelf design parameters. Journal of Building Engineering, 18, 195–209. doi:10.1016/j.jobe.2018.03.007
Mangkuto RA, Koerniawan MD, Soelami FN. Daylight Annual Illuminance Investigation in Elementary School Classrooms for the Tropic of Lhokseumawe, Indonesia. Journal of Applied Science and Engineering. 2021 Jul;25(1):129-39.
Manzan M, Clarich A. FAST energy and daylight optimization of an office with fixed and movable shading devices. Building and Environment. 2017 Feb 15;113:175-84.https://doi.org/10.1016/j.buildenv.2016.09.035.
Marszal AJ, Heiselberg P, Bourrelle JS, Musall E, Voss K, Sartori I. Napolitano A. Zero Energy Building – A review of definitions and calculation methodologies, Energy and Buildings, Volume 43, Issue 4, 2011, Pages 971-979, ISSN 0378-7788. https://doi.org/10.1016/j.enbuild.2010.12.022.
Naderi E, Sajadi B, Behabadi MA, Naderi E. Multi-objective simulation-based optimization of controlled blind specifications to reduce energy consumption, and thermal and visual discomfort: Case studies in Iran. Building and Environment. 2020 Feb 1;169:106570. https://doi.org/10.1016/j.buildenv.2019.106570.
Pal SK, Takano A, Alanne K, Siren K. (2017). A life cycle approach to optimizing carbon footprint and costs of a residential building. Building and Environment, 123, 146–162.
Park JH, Yun BY, Chang SJ, Wi S, Jeon J, Kim S. Impact of a passive retrofit shading system on educational building to improve thermal comfort and energy consumption. Energy and Buildings. 2020 Jun 1;216:109930.https://doi.org/10.1016/j.enbuild.2020.109930.
Pulido-Arcas JA, Rubio-Bellido C, Perez-Fargallo A, Oropeza-Perez I. 2020. Zero-Energy Buildings - New Approaches and Technologies, Net-Zero Energy Buildings: Principles and Applications (chapter 4). ISBN:978-1-78985-246-2. DOI:10.5772/intechopen.87727
Ramos Ruiz G, Fernandez Bandera C. Validation of calibrated energy models: Common errors. Energies. 2017 Oct 12;10(10):1587.
doi:10.3390/en10101587 Razmi A, Rahbar M, Bemanian M. PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort. Appl. Energy, vol. 305, no. September 2021, p. 117828, Jan. 2022, doi: 10.1016/j.apenergy.2021.117828.
Salam A, El Hibaoui A, Saif A. A comparison of activation functions in multilayer neural network for predicting the production and consumption of electricity power. International Journal of Electrical and Computer Engineering (IJECE). 2021 Feb 1;11(1):163-70.
Samadi S, Noorzai E, Beltrán LO, Abbasi S. A computational approach for achieving optimum daylight inside buildings through automated kinetic shading systems. Frontiers of Architectural Research. 2020 Jun 1;9(2):335-49. https://doi.org/10.1016/j.foar.2019.10.004.
Sang Y, Zhao JR, Sun J, Chen B, Liu S. Experimental investigation and EnergyPlus-based model prediction of thermal behavior of building containing phase change material. Journal of Building Engineering. 2017 Jul 1;12:259-66. doi:10.1016/j.jobe.2017.06.011
Sghiouri H, Mezrhab A, Karkri M, Naji H. Shading devices optimization to enhance thermal comfort and energy performance of a residential building in Morocco. Journal of building Engineering. 2018 Jul 1;18:292-302.
Sherif A, El-Zafarany A, Arafa R. External perforated window Solar Screens: The effect of screen depth and perforation ratio on energy performance in extreme desert environments. Energy and Buildings, 52, 2012, pages1-10. doi:10.1016/j.enbuild.2012.05.025
Sima E, Chagolla-Aranda MA, Huelsz G, Tovar R, Alvarez G. Tree and neighboring buildings shading effects on the thermal performance of a house in a warm sub-humid climate. Building Simulation (2015), 8(6), 711–723. doi:10.1007/s12273-015-0247-2
Singh R, Lazarus IJ, Kishore VV. Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate. Applied energy. 2016 Dec 15;184:155-70. doi:10.1016/j.apenergy.2016.10.007
Stazi F, Marinelli S, Di Perna C, Munafò P. Comparison on solar shadings: Monitoring of the thermo-physical behaviour, assessment of the energy saving, thermal comfort, natural lighting and environmental impact. Solar Energy. 2014 Jul 1;105:512-28. doi:10.1016/j.solener.2014.04.005
Szandala T. Review and comparison of commonly used activation functions for deep neural networks. InBio-inspired neurocomputing 2021 (pp. 203-224). Springer, Singapore.
Tabadkani A, Valinejad Shoubi M, Soflaei F, Banihashemi S. Integrated parametric design of adaptive facades for user's visual comfort, Automation in Construction, Volume 106, 2019, 102857, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2019.102857.
Taveres-Cachat E, Lobaccaro G, Goia F, Chaudhary G. A methodology to improve the performance of PV integrated shading devices using multi-objective optimization. Applied energy. 2019 Aug 1;247:731-44. https://doi.org/10.1016/j.apenergy.2019.04.033.
TensorFlow Team. TensorFlow: Large-scale machine learning on heterogeneous systems.2015.
Tian W, Heo Y, De Wilde P, Li Z, Yan D, Park CS, Feng X, Augenbroe G. A review of uncertainty analysis in building energy assessment. Renewable and Sustainable Energy Reviews. 2018 Oct 1;93:285-301.doi:10.1016/j.rser.2018.05.029
Toutou A, Fikry M, Mohamed W. The parametric based optimization framework daylighting and energy performance in residential buildings in hot arid zone. Alexandria engineering journal. 2018 Dec 1;57(4):3595-608.
Valladares-Rendon LG, Lo SL. Passive shading strategies to reduce outdoor insolation and indoor cooling loads by using overhang devices on a building. InBuilding Simulation 2014 Dec (Vol. 7, No. 6, pp. 671-681). Springer Berlin Heidelberg.DOI 10.1007/s12273-014-0182-7
Valladares-Rendon LG, Schmid G, Lo SL. Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of façade shading systems. Energy and Buildings. 2017 Apr 1;140:458-79. https://doi.org/10.1016/j.enbuild.2016.12.073.
Viana FA. A tutorial on Latin hypercube design of experiments. Quality and reliability engineering international. 2016 Jul;32(5):1975-85. doi:10.1002/qre.1924
Wagdy A, Fathy F, Altomonte S. Evaluating the daylighting performance of dynamic façades by using new annual climate-based metrics. PLEA 2016 (the 32nd Int. Conf. Passiv. Low Energy Archit., no. July, pp. 941–947, 2016.
Yeon S, Yu B, Seo B, Yoon Y, Lee KH. ANN based automatic slat angle control of venetian blind for minimized total load in an office building. Sol. Energy, vol. 180, no. January, pp. 133–145, 2019, doi: 10.1016/j.solener.2019.01.027.
Yi YK. Building facade multi-objective optimization for daylight and aesthetical perception. Building and Environment. 2019 Jun 1;156:178-90.
Yufka M, Ekici B, Cubukcuoglu C, Chatzikonstantinou I, Sariyildiz IS. Multi-Objective skylight optimization for a healthcare facility foyer space. In: 2017 IEEE congress on evolutionary computation; 2017. p. 1008–14.
Zhang F, Cheng L, Wu M, Xu X, Wang P, Liu Z. Performance analysis of two-stage thermoelectric generator model based on Latin hypercube sampling. Energy Conversion and Management. 2020 Oct 1;221:113159. doi:10.1016/j.enconman.2020.113159
Zhao J, Du Y. Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: A case study for office building in different climatic regions of China. Solar Energy. 2020 Aug 1;206:997-1017
.https://doi.org/10.1016/j.solener.2020.05.090.