شناخت، تحلیل و بررسی کاربرد هوش جمعی الگوریتم‌ بهینه‌سازی فیزاروم در معماری و شهرسازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه هنر

2 دانشگاه تهران

چکیده

در سال‌های گذشته، الگوریتم‌های بسیاری معرفی شدند تا به طور خاص مسائل بهینه‌سازی مختلفی در زمینه رشته‌های معماری و شهرسازی را حل کنند که ردپای طبیعت در اکثر این الگوریتم‌ها به چشم می‌خورد. انگیزه چنین الگوریتم‌هایی حل مسائل پیچیده‌ی مطرح مانند بهینه‌سازی انرژی، سازه، قطعات نما، حل چالش‌های موجود در طراحی گره‌های شهری، مسیریابی بهینه راه‌آهن و شریان‌های شهری، مدیریت ترافیک و دیگر بحث‌های مرتبط در مقیاس‌های خرد و کلان می‌باشد. هدف این پژوهش در گام نخست بررسی الگوریتم‌های هوش‌جمعی و در گام بعدی، سنجش رفتاری الگوریتم بهینه‌سازی فیزاروم در فرم‌یابی شبکه‌راه‌آهن‌شهری‌تهران با تعریف چهار پارامتر شامل گسل‎‌ها، بناهای تاریخی، زیرگذرها و پل‌ها-تقاطع‌ها، به عنوان موانعی برای رشد و مسیریابی در فضای مسئله می‌باشد. روش پژوهش حاضر، استدلالی و گردآوری مطالب مبتنی بر روش کتابخانه‌ای جهت آشنایی با اصول و قوانین حاکم بر الگوریتم‌های هوش‌جمعی است. در ادامه نیز به کمک مدل‌سازی‌ها و شبیه‌سازی‌های نرم‌افزاری، به بررسی و سنجش رفتاری الگوریتم بهینه‌سازی فیزاروم در برخورد با موانع تعریف شده در فرم‌یابی شبکه‌راه‌آهن‌شهری‌تهران خواهد پرداخت. یافته‌ها و نقشه‌های خروجی حاصل از مسیریابی فیزاروم در فضای مسئله حاکی از شناسایی درست موانع تعریفی و فرم‌یابی دقیق و البته بدیعی از شبکه‌راه‌آهن‌شهری‌تهران است. الگوریتم بهینه‌سازی فیزاروم توانسته با دقت و بدون خطا، فرم‌یابی شبکه را بدون تقاطع با موانع تعریف‌شده انجام دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Recognition, analysis and study of swarm intelligence application of Physarum optimization algorithm in architecture and urbanism

نویسندگان [English]

  • Mohammad Reza Matini 1
  • Said Khaghani 2
  • AmirBahador Baradaran 2
1 University of Art
2 University of Tehran
چکیده [English]

The amazing behaviors observed in nature form attractive sources of inspiration for solving real-world problems. Swarm intelligence computations are very important among nature-inspired computations because they focus on the social behavior of centralized, self-organized systems. Swarm intelligence is inspired by the behavior of some animals or insects, such as ants, termites, birds, fish, and organisms. This is caused by sudden behaviors from local interactions between the particles themselves and forms intelligent behaviors at the group level. Robustness and resilience make swarm intelligence a successful design model for algorithms that deal with growing complex problems. Physarum Polycephalum is one of the organisms who’s intelligent, complex and social behavior of the particles that make up its food resources, and the construction of strong networks to achieve this goal, motivate the use of Physarum Polycephalum to solve challenging optimization problems in architecture and urbanism. The aim of this study is to try to further study and recognize the characteristics and efficiency of swarm intelligence algorithms, and to measure the ability of the Physarum optimization algorithm in dealing with the challenges posed in the problem area. In fact, this study aims to measure the ability and performance of the Physarum optimization algorithm in dealing with four parameters defined in the problem as an example of existing challenges, including faults, historic buildings, underpasses and bridges and intersections, to investigate in shaping the Tehran Urban Railway Network, in order to take an effective step in the field of functional and behavioral growth of the Physarum optimization algorithm. The research method in the present study is analytical-descriptive method and collecting materials based on library method and searching for some principles and rules governing natural phenomena, which have been studied with the help of software modeling, simulation and investigation. In the first part of this research, with the help of library studies, an attempt has been made to obtain a correct analysis and complete knowledge of swarm intelligence algorithms. It then evaluates the Physarum optimization algorithm as one of nature-inspired algorithms and collective intelligence in network formation. After examining the location of the mentioned parameters in relation to the existing network and Tehran metro stations, their boundaries are determined in the problem space to provide the conditions for formulation for the algorithm. In the next step, the Physarum optimization algorithm is introduced to formulate the problem space. As is clear (Map 2), this algorithm avoids obstacles and tries to find the best and most optimal way to reach the stations or defining points in the problem. Searching for problem space (Tehran city) by the algorithm continues to the extent that it makes sure to search the entire problem space and access all points. The findings and exit maps obtained from the Physarum pathfinding in the problem area indicate the correct identification of the defining barriers and the accurate and, of course, innovative formulation of the Tehran Urban Railway Network. Physarum's optimization algorithm has been able to accurately and without error perform network configuration with defined barriers.

کلیدواژه‌ها [English]

  • Optimization
  • Urban railway network
  • Form finding
  • Swarm Intelligence algorithms
  • Physarum optimisation algorithm
گلابچی،محمود،خرسندنیکو،محمدرضا.(1393).معماری بایونیک، انتشارات دانشگاه تهران.
Adamatzky, Andrew. (2009). Steering plasmodium with light: Dynamical programming of physarum machine, New Mathematics and Natural Computation Journal, vol. 1, pp. 1-20, arXiv: 0908.0850.
Adamatzky, Andrew. (2013). Slime ware: Engineering Devices with Slime Mold, Artificial Life, vol.19, pp.317–330, doi: 10.1162/ARTL_a_00110.
Adamatzky, Andrew, G. J. Martinez, S.V. Chapa-Vergara, R. AsomozaPalacio, C. R. Stephens. (2011). Approximating Mexican highways with slime mould, Natural Computing, vol. 10, no. 3, pp. 1195–1214.
Alim, K, Amsalem, G, Peaudecerf, F, Brenner, M.P, Pringle, A. (2013). Random network peristalsis in physarum polycephalum organizes fluid flows across an individual, Proceedings of the National Academy of Sciences, vol.110, no.33, pp.13306–13311.
BastosFilho, Carmelo, deLimaNeto, Fernando, Lins, Anthony, Nascimento, Antonio, Lima, Marilia. (2008). A novel search algorithm based on fish school behavior, International Conference on Systems (IEEE), Man and Cybernetics, pp. 2646-2651, doi:10.1109/ICSMC.2008.4811695.
Calis, Gulben. (2015). An Improved Ant Colony Optimization Algorithm for Construction Site Layout Problems, Journal of Building Construction and Planning Research, vol.3, pp.221 – 232, doi: 10.4236/jbcpr.2015.34022.
Chen, Yuxing. (2015). Swarm Intelligence in Architectural Design, [Online]. Available:  http://ced.berkeley.edu/downloads/thesis/arch/2015/Chen_Yuxing.pdf. [Accessed: 04-Sep-2016].
Christian, Blum, Daniel, Merkle. (2008). Swarm intelligence: Introduction and applications, Natural Computing Series, Springer, pp.87-100, doi: 10.1007/978-3-540- 74089-6.
Chu, Shu-Chuan, Tsai, Pei-Wei. (2007). Computational intelligence based on the behavior of cats, International Journal of Innovative Computing, Information and Control, vol.3, no.1, pp.163–173.
Cuevas, Erik, Cienfuegos, Miguel, Zaldivar, Daniel, Pérez-Cisneros, Marco. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Systems with Applications, vol.40, no.16, pp.6374–6384, doi:10.1016/j.eswa.2013.05.041.
Dorigo, Marco, Birattari, Mauro. (2007).Swarm intelligence, Scholarpedia, vol.2, no.9, pp.1462.
Dorigo, Marco, Birattari, Mauro, Stutzle, Thomas. (2006). Ant colony optimization, Computational Intelligence Magazine (IEEE), vol.1, no.4, pp.28–39,doi:10.1109/MCI. 2006.329691.
Dorigo, Marco, Maniezzo, Vittorio, Colorni, Alberto. (1996). Ant System: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics – Part B, vol.26, pp.29–41.
Dorigo, Marco, Di-Caro, Gianni. (1999). Ant colony optimization: a new meta-heuristic, Proceedings of the 1999 Congress on Evolutionary Computation, vol.03, pp. 1470-1477, doi:10.1109/cec.1999.782657.
Dressler, Falko, Akan, Ozgur. (2010). Bio-inspired networking: from theory to practice, IEEE Communications Magazine, vol. 48, no. 11, pp. 176– 183, doi: 10.1109/MCOM.2010.5621985.
Duan, Haibin, Qiao, Peixin. (2014). Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning, International Journal of IntelligentComputing and Cybernetics, vol.7, no.1, pp.24–37,doi:10.1108/IJICC-02-2014-0005.
El-Zeiny, RashaMahmoudAli. (2012). Biomimicry as a Problem Solving Methodology in Interior Architecture, Procedia - Social and Behavioral Sciences, vol. 50, pp. 502-512.
Eusuff, Muzaffar, Lansey, Kevin, Pasha, Fayzul. (2006). Shuffled frog-leaping algorithm: a memetic metaheuristic for discrete optimization, Engineering Optimization, vol.38, no.2, pp.129–154, doi: 10.1080/03052150500384759.
Feng, X, Zhang, J, Yu, H. (2014). Mosquito host-seeking algorithm for TSP problem [j], Chinese Journal of computers, vol.37, no.8, pp.1794–1808.
Garnier, Simon, Gautrais, Jacques, Theraulaz, Guy. (2007). the biological principles of swarm intelligence, Swarm Intelligence, vol.1, no.1, pp.3–31, doi: 10.1007/s11721-007-0004-y.
Havens, Timothy, Spain, Christopher, Salmon, Nathan, Keller, James. (2008). Roach Infestation Optimization, Swarm Intelligence Symposium (IEEE), pp.1–7. doi:10.1109/SIS.2008.4668317.
Helms, Michael, Vattam, Swaroop, and Goel, Ashok. (2009). Biologically inspired design: process and products, Design Studies, vol. 30. pp. 606-622.
Howard, Frank. (1931). The Life History of Physarum Polycephalum, American Journal of Botany, vol. 18(2), pp. 116–133, doi:10.1002/j.1537-2197.1931.tb09577.x.
Ito, Kenaro, Sumpter, David, Nakagaki, Toshiyuki. (2010). Risk management in spatiotemporally varying field by true slime mold, Nonlinear Theory and Its Applications, IEICE, vol. 1, no. 1, pp. 26–36, doi: 10.1587/nolta.1.26.
Johnson, Steven. (2001). Emergence: the connected lives of ants, brains, cities, and software, Simon and Schuster publishing, Scribner, pp. 1-350, ISBN: 978-0-74321-826-9 (eBook).
Jones, Jeff. (2015). A morphological adaptation approach to path planning inspired by slime mould, International Journal of General Systems, Vol. 44, No. 3, pp. 279–291, http://dx.doi.org/10.1080/03081079.2014.997526.
Karaboga, Dervis. (2005). An idea based on honey bee swarm for numerical optimization, Technical report-tr06, Erciyes university, engineering faculty, computer engineering department. Vol.6, pp. 1-10, doi: 10.1.1.714.4934.
Karaboga, Dervis, Basturk, Bahriye. (2007). a powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization, vol.39, p.459–471, https://doi.org/10.1007/s10898-007-9149-x.
Kaveh, Ali, Farhoudi, Neda. (2013). A new optimization method: Dolphin echolocation, Advances in Engineering Software, vol.59, pp.53–70, doi:10.1016/j.advengsoft.2013.03.004.
Kennedy, James. (2001).Swarm Intelligence, Handbook of Nature-Inspired and Innovative Computing, Kluwer Academic Publishers, Boston, pp.187–219, doi: 10.1007/0-387-27705-6_6.
Kennedy, James, Eberhart, Russell. (1995). Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, vol.2, pp.1942–1948.
Kunita, Itsuki, Yoshihara, Kazunori, Tero, Atsushi, Ito, Kentaro, Lee, Chiu Fan, Fricker, Mark, Nakagaki, Toshiyuki. (2013). Adaptive path-finding and transport network formation by the amoeba-like organism physarum, Natural Computing and Beyond, Springer, vol. 6, pp. 14–29, https://doi.org/10.1007/978-4-431-54394-7_2.
Leach, Neil. (2009). Swarm Urbanism, Architectural Design, vol. 79(4), pp. 56–63, doi:10.1002/ad.918.
Liu, Qin, Xu, Jianmin. (2012). Traffic Signal Timing Optimization for Isolated Intersections, Social and Behavioral Sciences, vol.43, pp.210-215, https://doi.org/10.1016/j.sbspro.2012.04.093.
Masutti, Thiago, De Castro, Leonardo. (2017). Bee-Inspired Algorithms Applied to Vehicle Routing Problems: A Survey and a Proposal, Mathematical Problems in Engineering, vol.2017, pp.1-20, https://doi.org/10.1155/2017/3046830.
Mirjalili, SeyedAli, Mirjalili, SeyedMohammad, Lewis, Andrew. (2014). Grey Wolf Optimizer, Advances in Engineering Software, vol.69, pp.46–61, doi:10.1016/j.advengsoft.2013. 12.007.
Monismith, David, Mayfield, Blayne. (2008). Slime Mold as a model for numerical optimization, Swarm Intelligence Symposium (IEEE), pp.1-8, doi:10.1109/SIS.2008.4668295.
Nakagaki, Toshiyuki, Lima, Makoto, Ueda, Tetsuo, Nishiura, Yasumasa, Saigusa, Tetsu, Tero, Atsushi, Kobayashi, Ryo, Showalter, Kenneth. (2007). Minimum-risk path finding by an adaptive amoeba network, Physical review letters, vol. 99, no. 6, p. 068104-1 - 068104-4.
Nakagaki, Toshiyuki. (2001). Smart behavior of true slime mold in a labyrinth, Research in Microbiology, vol. 152, no. 9, pp. 767–770, doi: https://doi.org/10.1016/S0923-2508(01)01259-1.
Nakagaki, Toshiyuki, Yamada, Hiroyasu, Toth, Agota. (2001). Path finding by tube morphogenesis in an amoeboid organism, Biophys Chem, vol.92, issu.1, pp.47–52, doi: 10.1016/s0301-4622(01)00179-x.
Parpinelli, Rafael, Lopes, Heitor. (2011). New inspirations in swarm intelligence: a survey, International Journal of Bio-Inspired Computation, vol.3, no.1, pp. 1-16, doi: 10.1504/IJBIC.2011.038700.
Passino, Kevin. (2002). Biomimicry of bacterial foraging for distributed optimization and control, Control Systems Magazine (IEEE), vol.22, no.3, pp.52–67, doi: 10.1109/MCS.2002.1004010.
Petrs, Jan. (2016). Application of Intelligence of Swarm in Architecture, Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR), IEEE, pp. 1-6, doi: 10.1109/ICAIPR.2016.7585202.
Rajakumar, BR. (2012). The Lion’s Algorithm: A New Nature-Inspired Search Algorithm, Procedia Technology, vol.6, pp.126–135, doi:10.1016/j.protcy.2012.10.016.
Reid, Chris, Latty, Tanya, Dussutour, Audrey, Beekman, Madeleine. (2012). Slime mold uses an externalized spatial “memory” to navigate in complex environments, Proceedings of the National Academy of Sciences, Vol. 109, No. 43, pp. 17490–17494, doi: 10.1073/pnas.1215037109.
Saigusa, T, Tero, Atsushi, Nakagaki, Toshiyuki, Kuramoto, Yoshiki. (2008). Amoebae anticipate periodic events, Physical Review Letters, vol. 100, pp. 018101-1 – 018101-4.
Seki, K, Kamimura, Y, Yamada, Y. (1998). Analysis methods of phase propagation in autonomic oscillation of physarum polycephalum, in Engineering in Medicine and Biology Society, Proceedings of the 20th Annual International Conference of the IEEE, vol. 3, pp. 1606– 1609, doi: 10.1109/IEMBS.1998.747208.
Song, Ziyi, Wu, Yunfa, Song, Jianhua. (2018). Application of ant colony Algorithm and particle swarm optimization in architectural design, IOP Conf. Ser.: Earth Environ, vol.113, pp.1-8, doi:10.1088/1755-1315/113/1/012172.
Stephenson, Steven, Stempen, Henry. (1994). Myxomycetes: A handbook of Slime Molds, Timber Press, Portland, ISBN: 0-881920439-3.
Tero, Atsushi. (2014). Models and applications of organism transportation, A Mathematical Approach to Research Problems of Science and Technology, Springer, vol. 5, pp. 141–150, doi: 10.1007/978-4-431-55060-0_11.
Tero, Atsushi, Kobayashi, Ryo, Nakagaki, Toshiyuki. (2005). A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds, Physica D: Nonlinear Phenomena, vol.205, no.1, pp.125–135, doi:10.1016/j.physd.2005.01.010.
Tero, Atsushi, Takagi, Seiji, Saigusa, Tetsu, Ito, Kentaro, Bebber, Dan, Fricker, Mark, Yumiki, Kenji, Kobayashi, Ryo, Nakagaki, Toshiyuki. (2010). Rules for biologically inspired adaptive network design, Science, vol. 327, pp. 439–442, doi: 10.1126/science.1177894.
Thukral, Sudeepta, Diwaker, Chander. (2017). Traveling Salesman Problem Using Various Optimization Techniques, American International Journal of Research in Science, Technology, Engineering & Mathematics, pp.50-54.
Yang, Xin Shi. (2010). A New Metaheuristic Bat-Inspired Algorithm, Studies in Computational Intelligence, Vol. 284, pp. 65–74, doi:10.1007/ 978-3-642-12538-6_6.
Yang, Xin Shi, Deb, Suash. (2010). Engineering optimisation by cuckoo search, International Journal of Mathematical Modelling and Numerical Optimisation, vol.1, no.4, pp.330, doi:10.1504/IJMMNO.2010.035430.
Yang, Xin Shi, He, Xingshi. (2013). Firefly algorithm: recent advances and applications, International Journal of Swarm Intelligence, vol.1, no.1, pp.36, doi: 10.1504/ IJSI.2013.055801.
Zedadra, Ouarda & Guerrieri, Antonio & Jouandeau, Nicolas & Spezzano, Giandomenico & Seridi, Hamid & Fortino,Giancarlo. (2018).Swarm intelligence-based algorithms within IoT-based systems: A review, J. Parallel Distil. Comput, vol.122, pp.173-187, https://doi.org/10.1016/j.jpdc.2018.08.007.
Zhao, Ruiqing, Tang, Wansheng. (2008). Monkey algorithm for global numerical optimization, Journal of Uncertain Systems, vol.2, no.3, pp.165–176.