تاثیر جانمایی حیاط بر آسایش حرارتی بیرونی در ساختمان‌های مسکونی میان مرتبۀ شهر شیراز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فناوری معماری، گروه معماری، دانشکده معماری، دانشکدگان هنرهای زیبا، دانشگاه تهران، تهران، ایران.

2 استاد گروه فناوری معماری، دانشکده معماری، دانشکدگان هنرهای زیبا، دانشگاه تهران، تهران، ایران.

چکیده

جانمایی حیاط در ساختمان‌های مسکونی، به‌ویژه در ارتباط با آسایش حرارتی فضاهای بیرونی، اهمیت بسیاری دارد. با وجود هشدارهای روزافزون دربارۀ گرمایش جهانی، این موضوع همچنان در طراحی‌های معماری مورد غفلت قرار می‌گیرد. این پژوهش در راستای پر کردن این شکاف، با استفاده از سامانۀ پسا اثبات‌گرا و ترکیب راهبردهای شبیه‌سازی، مطالعات میدانی و استدلال منطقی، بهینه‌سازی جانمایی حیاط در خانه‌های یک تا هفت ‌طبقۀ شهر شیراز را بررسی کرده است. متغیرهای مستقل شامل نوع و تناسبات ابعادی حیاط، جهت‌گیری ساختمان و تعداد طبقات و متغیرهای وابسته، درصد ساعات آسایش حرارتی در حیاط و پیاده‌رو بودند. بدین منظور، گونه‌های مختلف جانمایی حیاط با نرم‌افزار راینو و پلاگین گرس‌هاپر تولید و شبیه‌سازی‌های حرارتی با افزونۀ ابزارهای لیدی‌باگ انجام شد. فرایند بهینه‌یابی نیز با افزونۀ اختاپوس صورت گرفت. نتایج نشان داد که جانمایی حیاط، در میان توده‌گذاری و در شرایطی­ که محور طولی آن، زاویۀ ۱۰۰ درجه نسبت به خط افق داشته باشد، بیشترین درصد ساعات آسایش حرارتی بیرونی را فراهم می‌کند. در ساختمان‌های یک‌طبقه، زاویۀ ۱۱۰ درجه مناسب‌تر بود. همچنین حیاط سراسری باید به‌نحوی قرار گیرد که عرض بخشی از توده در نزدیکی خیابان، حدود 22 % و عرض بخش دیگرش، حدود 38% طول زمین باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Impact of Courtyard Layout on Outdoor Thermal Comfort: A Parametric Study in Mid-Rise Residential Buildings in Shiraz City

نویسندگان [English]

  • Iman Mohammadi Bidsardareh 1
  • Shahin Heidari 2
1 PhD Candidate of Architectural Technology, Department of Architectural Technology School of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran.
2 Professor, Department of Architectural Technology, School of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran.
چکیده [English]

The spatial configuration of courtyards in residential buildings plays a crucial role in outdoor thermal comfort. Courtyards, as passive cooling strategies, have been widely used in warm climates to enhance microclimatic conditions. However, despite growing global concerns about climate change, the role of courtyard placement in architectural design remains largely overlooked. Many designers fail to account for the thermal performance of courtyard layouts, leading to inefficient designs that fail to maximize outdoor comfort.
This research underscores the importance of integrating computational simulations and optimization techniques in architectural design for enhancing outdoor thermal comfort. The findings provide valuable insights for architects, urban planners, and policymakers seeking to develop climate-responsive residential buildings, particularly in warm and arid regions. By incorporating data-driven methods into courtyard placement, designers can contribute to more sustainable and thermally comfortable urban environments.
This study aims to address this gap by employing a postpositivist research approach, integrating simulations, field studies, and logical reasoning to optimize courtyard placement in one- to seven-storey residential buildings in Shiraz, Iran. The independent variables considered in this research include courtyard type and dimensional proportions, building orientation, and the number of floors. The dependent variables are defined as the percentage of hours in which outdoor thermal comfort is achieved in the courtyard and the adjacent pedestrian walkway.
To conduct the study, various courtyard configurations were generated using Rhino software and the Grasshopper plugin. Thermal comfort simulations were then performed using the Ladybug Tools plugin, which provides detailed environmental analysis under different climatic scenarios. Additionally, optimization was conducted using the Octopus plugin, allowing for an iterative evaluation of courtyard layouts to determine the most effective configurations for maximizing outdoor thermal comfort percentage.
The findings demonstrate that the optimal courtyard placement occurs when the courtyard is centrally positioned within the building mass and its main axis oriented at a 100-degree angle relative to the horizon. Under these conditions, the courtyard achieves the highest percentage of hours with acceptable outdoor thermal comfort. This suggests that such a configuration effectively balances solar exposure and natural ventilation, reducing excessive heat accumulation in the courtyard area.
However, for single-storey residential buildings, a slightly different configuration is recommended. An angle of 110 degrees proved to be more effective in maximizing thermal comfort in low-rise structures, indicating that optimal orientation is influenced by building height.
Furthermore, the study highlights the impact of mass distribution in courtyard configurations. Specifically, the optimal placement involves allocating approximately 22% of the total lot length near the street, while the mass at the opposite end of the plot should occupy around 38% of the total site length. This distribution regulates airflow and optimizes shading, leading to improved microclimatic conditions in both the courtyard and the adjacent pedestrian areas.
Future studies should expand on these findings by incorporating additional factors such as vegetation, shading devices, and material properties to refine courtyard optimization strategies . Moreover, applying similar methodologies to different climatic regions could provide comparative insights into how courtyard design principles can be adapted for various environmental conditions.
 
 

کلیدواژه‌ها [English]

  • Outdoor Thermal Comfort
  • Parametric Design
  • Courtyard
  • Optimization
  • UTCI
  • Shiraz
Al Horr, Y., Arif, M., Kaushik, A., Mazroei, A., Katafygiotou, M., & Elsarrag, E. (2016). Occupant productivity and office indoor environment quality: A review of the literature. Building and Environment, 105, 369-389.
ASHRAE. (2014). ASHRAE Guideline 14: Measurement of energy, demand, and water savings. In (Vol. 4, pp. 1-150). ASHRAE. (2021). ASHRAE Handbook: Fundamentals. ASHRAE. https://books.google.com/books?id=5P-szgEACAAJ Azzouz, N., Bechikh, S., & Said, L. B. (2014). Steady state IBEA assisted by MLP neural networks for expensive multi-objective optimization problems Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada. https://doi.org/10.1145/2576768.2598271
Bader, J., Deb, K., & Zitzler, E. (2010). Faster Hypervolume-Based Search Using Monte Carlo Sampling. Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, Berlin, Heidelberg.
Bader, J., & Zitzler, E. (2011). HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. Evolutionary Computation, 19(1), 45-76. https://doi.org/10.1162/EVCO_a_00009
Bandyopadhyay, S., Chakraborty, R., & Maulik, U. (2015). Priority based ∊ dominance: A new measure in multiobjective optimization. Information Sciences, 305, 97-109. https://doi.org/https://doi.org/10.1016/j.ins.2015.01.018
Bechikh, S., Ben Said, L., & Ghedira, K. (2013). Group Preference-based Evolutionary Multi-objective Optimization with Non-Equally Important Decision Makers: Application to the Portfolio Selection Problem. International Journal of Computer Information Systems and Industrial Management Applications, 5.
Bechikh, S., Elarbi, M., & Ben Said, L. (2017). Many-objective Optimization Using Evolutionary Algorithms: A Survey. In S. Bechikh, R. Datta, & A. Gupta (Eds.), Recent Advances in Evolutionary Multi-objective Optimization (pp. 105-137). Springer International Publishing. https://doi.org/10.1007/978-3-319-42978-6_4
Bechikh, S., Said, L. B., & Ghédira, K. (2011, 5-8 Dec. 2011). Negotiating decision makers' reference points for group preference-based Evolutionary Multi-objective Optimization. 2011 11th International Conference on Hybrid Intelligent Systems (HIS),
Błażejczyk, K., Broede, P., Fiala, D., Havenith, G., Holmér, I., Jendritzky, G., Kampmann, B., & Kunert, A. (2010). Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica, 14(1), 91-102.
Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., & Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56(3), 515-535. https://doi.org/10.1007/s00484-011-0453-2
Bröde, P. (2009). UTCI Fortran Sources: Program for calculating UTCI Temperature. Retrieved April, 21 from https://www.utci.org/cost.html
Bröde, P., Fiala, D., Błażejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., Tinz, B., & Havenith, G. (2012). Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 56(3), 481-494. https://doi.org/10.1007/s00484-011-0454-1
Bulus, M. (2018). Optimum microclimate effect of fully-enclosed courtyard ratios and orientation in Nigerian temperate hot-dry climate [Article]. Alam Cipta, 11(1), 16-22. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056723096&partnerID=40&md5=df7282f51155b175981819f169cb3dda
Carlos, R. G., Eduardo, M. D. M., Carmen, G. M., & Victoria, L. C. (2019). Tempering potential-based evaluation of the courtyard microclimate as a combined function of aspect ratio and outdoor temperature [Article]. Sustainable Cities and Society, 51, Article 101740. https://doi.org/10.1016/j.scs.2019.101740
Cetin, M., Adiguzel, F., Kaya, O., & Sahap, A. (2018). Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability, 20(1), 361-375.
Chen, Y.-C., & Matzarakis, A. (2018). Modified physiologically equivalent temperature—basics and applications for western European climate. Theoretical and Applied Climatology, 132(3), 1275-1289. https://doi.org/10.1007/s00704-017-2158-x
Cheung, P. K., & Jim, C. Y. (2017). Determination and application of outdoor thermal benchmarks. Building and Environment, 123, 333-350. https://doi.org/https://doi.org/10.1016/j.buildenv.2017.07.008
Cheung, P. K., & Jim, C. Y. (2019). Improved assessment of outdoor thermal comfort: 1-hour acceptable temperature range. Building and Environment, 151, 303-317. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.01.057
Cohen, P., Potchter, O., & Matzarakis, A. (2013). Human thermal perception of Coastal Mediterranean outdoor urban environments. Applied Geography, 37, 1-10. https://doi.org/https://doi.org/10.1016/j.apgeog.2012.11.001
d'Ambrosio Alfano, F. R., Palella Bi Fau - Riccio, G., & Riccio, G. Thermal environment assessment reliability using temperature--humidity indices. (1880-8026 (Electronic)). de Freitas, C. R., & Grigorieva, E. A. (2017). A comparison and appraisal of a comprehensive range of human thermal climate indices. International Journal of Biometeorology, 61(3), 487-512. https://doi.org/10.1007/s00484-016-1228-6
Delgarm, N., Sajadi, B., Kowsary, F., & Delgarm, S. (2016). Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO). Applied Energy, 170, 293-303. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.02.141
Diz-Mellado, E., López-Cabeza, V. P., Roa-Fernández, J., Rivera-Gómez, C., & Galán-Marín, C. (2023). Energy-saving and thermal comfort potential of vernacular urban block porosity shading. Sustainable Cities and Society, 89, 104325. https://doi.org/https://doi.org/10.1016/j.scs.2022.104325
Dong, X., Wu, Y., Chen, X., Li, H., Cao, B., Zhang, X., Yan, X., Li, Z., Long, Y., & Li, X. (2021). Effect of thermal, acoustic, and lighting environment in underground space on human comfort and work efficiency: A review. Science of The Total Environment, 786, 147537.
Dwijendra, N. K. A., Rahardja, U., Kumar, N. B., Patra, I., Zahra, M. M. A., Finogenova, Y., Guerrero, J. W. G., Izzat, S. E., & Alawsi, T. (2022). An Analysis of Urban Block Initiatives Influencing Energy Consumption and Solar Energy Absorption. Sustainability (Switzerland), 14(21), 14273.
Elarbi, M., Bechikh, S., Ben Said, L., & Datta, R. (2017). Multi-objective Optimization: Classical and Evolutionary Approaches. In S. Bechikh, R. Datta, & A. Gupta (Eds.), Recent Advances in Evolutionary Multi-objective Optimization (pp. 1-30). Springer International Publishing. https://doi.org/10.1007/978-3-319-42978-6_1
Fanger, O. (1972). Thermal Comfort. New York.
Fiala, D., Havenith, G., Bröde, P., Kampmann, B., & Jendritzky, G. (2012). UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56(3), 429-441. https://doi.org/10.1007/s00484-011-0424-7
Futcher, J., Mills, G., Emmanuel, R., & Korolija, I. (2017). Creating sustainable cities one building at a time: Towards an integrated urban design framework. Cities, 66, 63-71. Gagge, A. P., Fobelets, A. P., & Berglund, L. (1986). A standard predictive index of human response to the thermal environment.
García-Melgar, P., Guerrero Delgado, M., Montero-Gutiérrez, P., Romero García, C., Sánchez Ramos, J., & Álvarez Domínguez, S. (2025). Nature-based cool pavements for urban overheating mitigation: Experimental proof of concept. Building and Environment, 267, 112184. https://doi.org/https://doi.org/10.1016/j.buildenv.2024.112184
Givoni, B. (1963). Estimation of the effect of climate on man: Development of a new thermal index. Hebrew University, Jerusalem.
Givoni, B., Noguchi, M., Saaroni, H., Pochter, O., Yaacov, Y., Feller, N., & Becker, S. (2003). Outdoor comfort research issues. Energy and Buildings, 35(1), 77-86. https://doi.org/https://doi.org/10.1016/S0378-7788(02)00082-8
Gonzalez, R. R., Nishi, Y., & Gagge, A. P. (1974). Experimental evaluation of standard effective temperature a new biometeorological index of man's thermal discomfort. International Journal of Biometeorology, 18(1), 1-15. https://doi.org/10.1007/BF01450660
Gou, S., Nik, V. M., Scartezzini, J.-L., Zhao, Q., & Li, Z. (2018). Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand. Energy and Buildings, 169, 484-506. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.09.095
Grazuleviciute-Vileniske, I., Daugelaite, A., & Viliunas, G. (2022). Classification of Biophilic Buildings as Sustainable Environments. Buildings, 12(10), 1542.
Hardy, B. (1990, 1998). ITS-90 formulations for vapor pressure, frostpoint temperature, dewpoint temperature, and enhancement factors in the range–100 to+ 100 C.
Havenith, G., Fiala, D., Błazejczyk, K., Richards, M., Bröde, P., Holmér, I., Rintamaki, H., Benshabat, Y., & Jendritzky, G. (2012). The UTCI-clothing model. International Journal of Biometeorology, 56(3), 461-470. https://doi.org/10.1007/s00484-011-0451-4
Hermawan, H., & Švajlenka, J. (2022). Building Envelope and the Outdoor Microclimate Variable of Vernacular Houses: Analysis on the Environmental Elements in Tropical Coastal and Mountain Areas of Indonesia. Sustainability (Switzerland), 14(3), 1818.
Höppe, P. (1999). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71-75. https://doi.org/10.1007/s004840050118 ISO, I. O. f. S.-. (1993).
Evaluation of cold environments: Determination of required clothing insulation (IREQ). In ISO/TR 11079:1993. Jendritzky, G., de Dear, R., & Havenith, G. (2012). UTCI—Why another thermal index? International Journal of Biometeorology, 56(3), 421-428. https://doi.org/10.1007/s00484-011-0513-7
Jendritzky, G., Havenith, G., Weihs, P., & Batchvarova, E. (2009). Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being. Final Report COST Action, 730(10).
Kalboussi, S., Bechikh, S., Kessentini, M., & Ben Said, L. (2013, 2013//). Preference-Based Many-Objective Evolutionary Testing Generates Harder Test Cases for Autonomous Agents. Search Based Software Engineering, Berlin, Heidelberg. Kastner, P., & Dogan, T. (2021). Eddy3D: A toolkit for decoupled outdoor thermal comfort simulations in urban areas. Building and Environment, 212, 108639. https://doi.org/10.1016/j.buildenv.2021.108639
Kim, I. Y., & de Weck, O. L. (2005). Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Structural and Multidisciplinary Optimization, 29(2), 149-158. https://doi.org/10.1007/s00158-004-0465-1
Knez, I., & Thorsson, S. (2006). Influences of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square. International Journal of Biometeorology, 50(5), 258-268. https://doi.org/10.1007/s00484-006-0024-0
Krüger, E., Drach, P., & Broede, P. (2017). Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation. International Journal of Biometeorology, 61(3), 463-475. https://doi.org/10.1007/s00484-016-1226-8 Kyle, W. J. (1994, 1994). The human bioclimate of Hong Kong.
Lai, D., Guo, D., Hou, Y., Lin, C., & Chen, Q. (2014). Studies of outdoor thermal comfort in northern China [Article]. Building and Environment, 77, 110-118. https://doi.org/10.1016/j.buildenv.2014.03.026
Lai, D., Lian, Z., Liu, W., Guo, C., Liu, W., Liu, K., & Chen, Q. (2020). A comprehensive review of thermal comfort studies in urban open spaces. Science of The Total Environment, 742, 140092.
Lai, D., Zhou, X., & Chen, Q. (2017a). Measurements and predictions of the skin temperature of human subjects on outdoor environment. Energy and Buildings, 151, 476-486. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.07.009 Lai, D., Zhou, X., & Chen, Q. (2017b). Modelling dynamic thermal sensation of human subjects in outdoor environments. Energy and Buildings, 149, 16-25. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.05.028
Lam, C. K. C., Gao, Y., Yang, H., Chen, T., Zhang, Y., Ou, C., & Hang, J. (2021). Interactive effect between long-term and short-term thermal history on outdoor thermal comfort: Comparison between Guangzhou, Zhuhai and Melbourne. Science of The Total Environment, 760, 144141. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144141
Li, J., Niu, J., Mak, C. M., Huang, T., & Xie, Y. (2020). Exploration of applicability of UTCI and thermally comfortable sun and wind conditions outdoors in a subtropical city of Hong Kong. Sustainable Cities and Society, 52, 101793. https://doi.org/https://doi.org/10.1016/j.scs.2019.101793 Liu, B. (2023). Human Settlement, Inhabitation, and Travel Environment Construction Theory and Technology. In The Trialism and Application of Human Settlement, Inhabitation and Travel Environment Studies (pp. 185-267). Springer.
Liu, K., Nie, T., Liu, W., Liu, Y., & Lai, D. (2020). A machine learning approach to predict outdoor thermal comfort using local skin temperatures. Sustainable Cities and Society, 59, 102216. https://doi.org/https://doi.org/10.1016/j.scs.2020.102216 Liu, Z., Cheng, K. Y., He, Y., Jim, C. Y., Brown, R., Shi, Y., Lau, K., & Ng, E. (2022). Microclimatic measurements in tropical cities: Systematic review and proposed guidelines. Building and Environment, 109411.
López-Cabeza, V. P., Rivera-Gómez, C., Roa-Fernández, J., Hernandez-Valencia, M., & Herrera-Limones, R. (2023). Effect of thermal inertia and natural ventilation on user comfort in courtyards under warm summer conditions. Building and Environment, 228, 109812.
https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109812 Lucchese, J. R., Mikuri, L. P., de Freitas, N. V. S., & Andreasi, W. A. (2016). Application of selected indices on outdoor thermal comfort assessment in Midwest Brazil. International Journal of Energy and Environment, 7(4), 291. Mackey, C. (2021). Where are the building programs for individual rooms in residential buildings? Retrieved Jan, 17 from https://discourse.ladybug.tools/t/where-are-the-building-programs-for-individual-rooms-in-residential-buildings/15812 Martinelli, L., & Matzarakis, A. (2017). Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones [Article]. Sustainable Cities and Society, 29, 97-106. https://doi.org/10.1016/j.scs.2016.12.004
Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76-84. https://doi.org/10.1007/s004840050119
Mayer, H., & Höppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, 38(1), 43-49. https://doi.org/10.1007/BF00866252
Monteith, J., & Unsworth, M. (2013). Principles of environmental physics: plants, animals, and the atmosphere. Academic press.
Moonen, P., Dorer, V., & Carmeliet, J. (2011). Evaluation of the ventilation potential of courtyards and urban street canyons using RANS and LES. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 414-423.
Moraci, F., Errigo, M. F., Fazia, C., Campisi, T., & Castelli, F. (2020). Cities under pressure: Strategies and tools to face climate change and pandemic. Sustainability (Switzerland), 12(18), 7743.
Muhaisen, A. S. (2006). Shading simulation of the courtyard form in different climatic regions. Building and Environment, 41(12), 1731-1741.
Muhaisen, A. S., & Gadi, M. B. (2006a). Effect of courtyard proportions on solar heat gain and energy requirement in the temperate climate of Rome [Article]. Building and Environment, 41(3), 245-253. https://doi.org/10.1016/j.buildenv.2005.01.031
Muhaisen, A. S., & Gadi, M. B. (2006b). Shading performance of polygonal courtyard forms [Article]. Building and Environment, 41(8), 1050-1059. https://doi.org/10.1016/j.buildenv.2005.04.027
Murray, F. W. (1967). On the Computation of Saturation Vapor Pressure. Journal of Applied Meteorology and Climatology, 6(1), 203-204. https://doi.org/https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
Nakhaee Sharif, A., Keshavarz Saleh, S., Afzal, S., Shoja Razavi, N., Fadaei Nasab, M., & Kadaei, S. (2022). Evaluating and Identifying Climatic Design Features in Traditional Iranian Architecture for Energy Saving (Case Study of Residential Architecture in Northwest of Iran). Complexity, 2022.
Nasrollahi, N., Hatami, M., Khastar, S. R., & Taleghani, M. (2017). Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate [Article]. Sustainable Cities and Society, 35, 449-467. https://doi.org/10.1016/j.scs.2017.08.017
Nazarian, N., Acero, J. A., & Norford, L. (2019). Outdoor thermal comfort autonomy: Performance metrics for climate-conscious urban design. Building and Environment, 155, 145-160. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.03.028
Nicholson, S., Nikolopoulou, M., Watkins, R., Löve, M., & Ratti, C. (2024). Data driven design for urban street shading: Validation and application of ladybug tools as a design tool for outdoor thermal comfort. Urban Climate, 56, 102041. https://doi.org/https://doi.org/10.1016/j.uclim.2024.102041
Nikolopoulou, M., Baker, N., & Steemers, K. (2001). Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar Energy, 70(3), 227-235. https://doi.org/https://doi.org/10.1016/S0038-092X(00)00093-1
Nikolopoulou, M., & Lykoudis, S. (2006). Thermal comfort in outdoor urban spaces: Analysis across different European countries. Building and Environment, 41(11), 1455-1470. https://doi.org/https://doi.org/10.1016/j.buildenv.2005.05.031 Oh, W., Ooka, R., Nakano, J., Kikumoto, H., & Ogawa, O. (2019). Environmental index for evaluating thermal sensations in a mist spraying environment. Building and Environment, 161, 106219. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106219
Oktay, D. (2002). Design with the climate in housing environments: An analysis in Northern Cyprus [Article]. Building and Environment, 37(10), 1003-1012. https://doi.org/10.1016/S0360-1323(01)00086-5
Olgyay, V., Olgyay, A., Lyndon, D., Olgyay, V. W., Reynolds, J., & Yeang, K. (2015). Design with Climate: Bioclimatic Approach to Architectural Regionalism - New and expanded Edition (REV - Revised ed.). Princeton University Press. https://doi.org/10.2307/j.ctvc77kqb
Pacheco, R., Ordóñez, J., & Martínez, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16(6), 3559-3573.
Pickup, J., & de Dear, R. (2000). An outdoor thermal comfort index (OUT_SET*)-part I-the model and its assumptions. Pijpers-van Esch, M. (2015). Designing the Urban Microclimate: A framework for a design-decision support tool for the dissemination of knowledge on the urban microclimate to the urban design process. A+ BE| Architecture and the Built Environment(6), 1-308.
Potchter, O., Cohen, P., Lin, T.-P., & Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of The Total Environment, 631-632, 390-406. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.02.276
Qaid, A., & Ossen, D. R. (2015). Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. International Journal of Biometeorology, 59(6), 657-677. https://doi.org/10.1007/s00484-014-0878-5
Rivera-Gómez, C., Diz-Mellado, E., Galán-Marín, C., & López-Cabeza, V. (2019). Tempering potential-based evaluation of the courtyard microclimate as a combined function of aspect ratio and outdoor temperature. Sustainable Cities and Society, 51, 101740.
Rodríguez-Algeciras, J., Tablada, A., Chaos-Yeras, M., De la Paz, G., & Matzarakis, A. (2018). Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba [Article]. Renewable Energy, 125, 840-856. https://doi.org/10.1016/j.renene.2018.01.082
Rojas, J. M., Galán-Marín, C., & Fernández-Nieto, E. D. (2012). Parametric study of thermodynamics in the mediterranean courtyard as a tool for the design of eco-efficient buildings. Energies, 5(7), 2381-2403.
Rutty, M., & Scott, D. (2015). Bioclimatic comfort and the thermal perceptions and preferences of beach tourists. International Journal of Biometeorology, 59(1), 37-45. https://doi.org/10.1007/s00484-014-0820-x
Safarzadeh, H., & Bahadori, M. N. (2005). Passive cooling effects of courtyards [Article]. Building and Environment, 40(1), 89-104. https://doi.org/10.1016/j.buildenv.2004.04.014
Sehgal, J., & Kumar, G. (2025). Thermal comfort in open public spaces – A critical review in Indian context. Building and Environment, 267, 112239. https://doi.org/https://doi.org/10.1016/j.buildenv.2024.112239
Shareef, S. (2021). The impact of urban morphology and building's height diversity on energy consumption at urban scale. The case study of Dubai. Building and Environment, 194, 107675.
Sharma, M. R., & Sharafat, A. (1986). Tropical summer index—a study of thermal comfort of Indian subjects. Building and Environment, 21(1), 11-24.
Soflaei, F., Shokouhian, M., Abraveshdar, H., & Alipour, A. (2017). The impact of courtyard design variants on shading performance in hot- arid climates of Iran [Article]. Energy and Buildings, 143, 71-83. https://doi.org/10.1016/j.enbuild.2017.03.027
Soflaei, F., Shokouhian, M., Tabadkani, A., Moslehi, H., & Berardi, U. (2020). A simulation-based model for courtyard housing design based on adaptive thermal comfort [Article]. Journal of Building Engineering, 31, Article 101335. https://doi.org/10.1016/j.jobe.2020.101335 Spagnolo, J., & de Dear, R. (2003). A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Building and Environment, 38(5), 721-738. https://doi.org/https://doi.org/10.1016/S0360-1323(02)00209-3
Staiger, H., Laschewski, G., & Grätz, A. (2012). The perceived temperature – a versatile index for the assessment of the human thermal environment. Part A: scientific basics. International Journal of Biometeorology, 56(1), 165-176. https://doi.org/10.1007/s00484-011-0409-6
Steadman, R. G. (1979). The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. Journal of Applied Meteorology and Climatology, 18(7), 861-873.
Taleghani, M. (2018). Outdoor thermal comfort by different heat mitigation strategies- A review. Renewable and Sustainable Energy Reviews, 81, 2011-2018. https://doi.org/https://doi.org/10.1016/j.rser.2017.06.010
Taleghani, M., Tenpierik, M., & van den Dobbelsteen, A. (2014). Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change [Article]. Renewable Energy, 63, 486-497. https://doi.org/10.1016/j.renene.2013.09.028
Taleghani, M., Tenpierik, M., van den Dobbelsteen, A., & Sailor, D. J. (2014). Heat in courtyards: A validated and calibrated parametric study of heat mitigation strategies for urban courtyards in the Netherlands [Article]. Solar Energy, 103, 108-124. https://doi.org/10.1016/j.solener.2014.01.033
Thom, E. C. (1959). The Discomfort Index. Weatherwise, 12(2), 57-61. https://doi.org/10.1080/00431672.1959.9926960
Vaz, I. C. M., Ghisi, E., Thives, L. P., Vieira, A. S., Rupp, R. F., Schaefer, A., Flores, R. A., Bastos, M. B., Marinoski, D. L., Silva, A. S., Weeber, M., & Invidiata, A. (2025). Dashboard for interpreting future climate files used in the simulation of buildings – An outdoor thermal comfort approach. Energy and Buildings, 326, 115059. https://doi.org/https://doi.org/10.1016/j.enbuild.2024.115059 Xie, Y., Niu, J., Zhang, H., Liu, S., Liu, J., Huang, T., Li, J., & Mak, C. M. (2020). Development of a multi-nodal thermal regulation and comfort model for the outdoor environment assessment. Building and Environment, 176, 106809.
Yaglou, C. P., & Minaed, D. (1957). Control of heat casualties at military training centers. Arch. Indust. Health, 16(4), 302-316.
Yang, L., & Li, Y. (2011). Thermal conditions and ventilation in an ideal city model of Hong Kong. Energy and Buildings, 43(5), 1139-1148.
Zamani, Z., Heidari, S., Azmoodeh, M., & Taleghani, M. (2019). Energy performance and summer thermal comfort of traditional courtyard buildings in a desert climate [Article]. Environmental Progress and Sustainable Energy, 38(6), Article e13256. https://doi.org/10.1002/ep.13256
Zamani, Z., Heidari, S., & Hanachi, P. (2018). Reviewing the thermal and microclimatic function of courtyards [Review]. Renewable and Sustainable Energy Reviews, 93, 580-595. https://doi.org/10.1016/j.rser.2018.05.055
Zhan, D., Zhang, Q., Kwan, M.-P., Liu, J., Zhan, B., & Zhang, W. (2022). Impact of urban green space on self-rated health: Evidence from Beijing. Frontiers in Public Health, 10.
Zhao, J., & Du, Y. (2020). Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: A case study for office building in different climatic regions of China. Solar Energy, 206, 997-1017. https://doi.org/https://doi.org/10.1016/j.solener.2020.05.090
Zheng, P., Yao, R., O'Donnell, J., Mohareb, E., Kumar, P., Pain, C., Huang, X., & Li, B. (2025). A comprehensive review of thermal comfort evaluation methods and influencing factors for urban parks. Building and Environment, 267, 112159. https://doi.org/https://doi.org/10.1016/j.buildenv.2024.112159 Zitzler, E., & Künzli, S. (2004, 2004//). Indicator-Based Selection in Multiobjective Search. Parallel Problem Solving from Nature - PPSN VIII, Berlin, Heidelberg.