بررسی ویژگی‌های طراحی مساکن ساخته شده با پرینترهای سه‌بعدی با روش موردپژوهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری، گروه معماری، دانشکده معماری، دانشکدگان هنرهای زیبا، دانشگاه تهران، تهران، ایران .

2 دانشیار گروه معماری، دانشکده معماری، دانشکدگان هنرهای زیبا، دانشگاه تهران، تهران، ایران.

3 دانشیار گروه معماری، دانشکده معماری و شهرسازی، دانشگاه هنر ایران، تهران، ایران.

چکیده

این مطالعه یک بررسی نظام مند از نمونه های ساخته شده با فناوری پرینت سه بعدی در زمینه ی طراحی معماری و ساخت است. این تحقیق بر مبنای روش مورد پژوهی و با استفاده از روش ترکیبی انجام شده است. . در قسمت کمی پژوهش به جمع‌آوری داده‌های عددی و در قسمت کیفی به بررسی ویژگی‌های ظاهری، ساختاری و عملکردی ساختمان‌ها با استفاده از مطالعه موردی و تحلیل متون مرتبط پرداخته ایم. بعد از بررسی مساکن ساخته شده نتایج ذیل حاصل گردید. بتن و سیستم پرینتر دروازه ای پرکاربردترین نوع مصالح و نوع پرینتر در این فناوری هستند. در مورد مسلح سازی میلگرد گذاری دستی و افزودن مواد به بتن از پرکاربردترین روش ها می باشد. در مورد ویژگی ها معماری باید عنوان کرد که پلان کشیده مستطیلی برای پرینتر دروزاه ای و پلان های سه شاخه و شعاعی برای پرینتر های بازوی رباتیک مناسبترند. در زمینه ی مجموعه سازی و نوع گسترش چیدمان نیز می توان اذعان کرد که چیدمان خطی شطرنجی از چیدمان شعاعی بیشتر مورد استفاده قرار گرفته است. بازوی رباتیک امکان ساخت فرم های آزاد را به ما می دهد، برای ساخت و سازهای زیاد جهت هزینه ی کمتر، سیستم دروازه ای و چیدمان خطی توصیه می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Examination of the Differences Between the Concepts of “Sample” and “Case” and Their Relationship with “Design Research” in Landscape Architecture

نویسندگان [English]

  • Milad Rezazadeh 1
  • Hamed Mazaherian 2
  • Mohammad Reza Matini 3
1 PhD Candidate of Architecture, Department of Architecture, School of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran.
2 Associate Professor, Department of Architecture, School of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran.
3 Associate Professor, Department of Architecture, School of Architecture, Art University of Iran, Tehran, Iran.
چکیده [English]

 This research project investigates the design features of houses
constructed using 3D printing technology. By employing a case
study research method, this study seeks to conduct an in-depth
examination of the architectural attributes, construction processes,
and potential benefits of 3D-printed houses. The spread of largescale computer-aided manufacturing technologies is significantly
transforming architectural design. Digital fabrication is propelling
architecture into a new phase of complexity and detail previously
unachievable through conventional manufacturing methods.
Understanding the impact of these technologies can help guide
future research, drive innovation in design and manufacturing
processes, and improve the training of professionals. However,
there is a scarcity of comprehensive reviews providing a holistic
view of the impacts of 3D printing technologies on architecture.
This article offers a systematic review of 3D-printed samples
in architectural design and construction. This research adopts
the case study method and employs a combined methodology.
In the quantitative component of the research, numerical data
were gathered, and in the qualitative component, the appearance,
structural characteristics, and functional aspects of buildings
were examined using case studies and analyzing the texts of
related resources. To explain the principles of designing houses
built with 3D printers, examples of houses constructed using 3D
printing technology worldwide were identified and categorized.
Items examined for each sample were described, and the samples
were evaluated based on defined criteria to outline the basics of
designing housing constructed with 3D printing technology. The
study focuses on innovative design features, emphasizing the
potential for 3D printing to provide sustainable housing solutions.
Architectural attributes of 3D-printed homes are analyzed for
their unique aesthetic and functional characteristics, highlighting
how 3D printing can address housing shortages and affordability
issues. The findings indicate that concrete and the gantry printer
system are the most commonly used materials and printer types
in this technology. Compared to traditional construction methods,
especially for non-linear forms, 3D printing significantly
reduces construction time. Manual reinforcement with rebar
or the addition of materials to concrete is a prevalent practice.
Elongated rectangular plans are better suited for two-way
printers, while three-branch and radial plans are more suitable for
  robotic arm printers. Due to current limitations in 3D printing for
roof construction, roofs are often still made using conventional
methods. For layout expansion and complex designs, checkedlinear layouts are more commonly used than radial layouts.
Robotic arms allow for greater flexibility, enabling more diverse
layouts and freer forms. However, for cost-efficient projects,
gantry systems and linear layouts are often recommended.
 

کلیدواژه‌ها [English]

  • 3D Printing
  • Architectural Design
  • Additive Manufacturing Technology
  • Housing
  • Design Requirements
Ahmed, G. H., Askandar, N. H., & Jumaa, G. B. (2022). A review of largescale 3DCP: Material characteristics, mix design, printing process, and reinforcement strategies. Structures 2022 Publisher: Elsevier. https://doi.org/10.1016/j.istruc.2022.06.068,
Akulova, I. I., & Slavcheva, G. S. (2020). Methodical Approach to Calculation of the Maintenance Cost for 3D Built Printing Equipment. IOP Conference Series: Materials Science and Engineering, 753. https://DOI:10.1088/1757-899X/753/5/052056
Alami, A. H., Olabi, A. G., Ayoub, M., Aljaghoub, H., Alasad, S., & Abdelkareem, M. A. (2023). 3D Concrete Printing: Recent Progress, Applications, Challenges, and Role in Achieving Sustainable Development Goals. Buildings, 13(4), 924. https://doi.org/10.3390/buildings13040924ht Allouzi, R., Al-Azhari, W., & Allouzi, R. (2020). Conventional construction and 3D printing: A comparison study on material cost in Jordan. Journal of Engineering, 2020(1), 1424682. https://doi.org/10.1155/2020/1424682
Arnold, L., Jöhnk, J., Vogt, F., & Urbach, N. (2022). IIoT platforms’ architectural features–a taxonomy and five prevalent archetypes. Electronic Markets, 32(2), 927-944. https://link.springer.com/article/10.1007/s12525-021-00520-0
Asaf, O., Bentur, A., Larianovsky, P., & Sprecher, A. (2023). From soil to printed structures: A systematic approach to designing clay-based materials for 3D printing in construction and architecture. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2023.133783
Batikha, M., Jotangia, R., Baaj, M. Y., & Mousleh, I. (2022). 3D concrete printing for sustainable and economical construction: A comparative study. Automation in Construction, 134, 104087. https://doi.org/10.1016/j.autcon.2021.104087
Bazli, M., Ashrafi, H., Rajabipour, A., & Kutay, C. (2023). 3D printing for remote housing: Benefits and challenges. Automation in Construction, 148, 104772. https://doi.org/10.1016/j.autcon.2023.104772
Berman, B. (2012). 3-D printing: The new industrial revolution. Business horizons, 55(2), 155-162. https://doi.org/10.1016/j.bushor.2011.11.003
Besklubova, S., Skibniewski, M. J., & Zhang, X. (2021). Factors affecting 3D printing technology adaptation in construction. Journal of construction engineering and management, 147(5), 04021026. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002034
Bici, A., & Yunitsyna, A. (2023). Analysis of 3D printing techniques for building construction: a review. Construction Robotics, 7(2), 107-123. https://doi.org/10.1007/s41693-023-00108-4
Budiono, H. S., Hilmy, F., & Taufik, I. (2023). The Effect of Printing Speed Variations on Dimensional Stability of 3D Printing Results Made from Waste Bottle Filament. Jurnal E-Komtek (Elektro-Komputer-Teknik), 7(1), 187-194. https://doi.org/10.37339/e-komtek.v7i1.1114
Bulakh, I. (2019). Common features of architectural design of the medical purpose building. Science & Technique. https://doi.org/10.21122/2227-1031-2019-18-4-311-318
Buswell, R. A., Bos, F. P., Silva, W. R. L. d., Hack, N., Kloft, H., Lowke, D., Freund, N., Fromm, A., Dini, E., & Wangler, T. (2022). Digital fabrication with cement-based materials: process classification and case studies. Digital Fabrication with Cement-Based Materials: State-of-the-Art Report of the RILEM TC 276-DFC, 11-48. https://doi.org/10.1007/978-3-030-90535-4_2 Chathuranga, S., Jayasinghe, S., Antuchevičienė, J., Wickramarachchi, R., Udayanga, N., & Weerakkody, W. A. S. (2023). Practices Driving the Adoption of Agile Project Management Methodologies in the Design Stage of Building Construction Projects. Buildings. https://doi.org/10.3390/buildings13041079
Dancel, R. (2019). 3D printed house for disaster-affected areas. Disaster Risk Reduction and Infrastructure Development (DRRID) Forum, https://www.researchgate.net/profile/Robert-Dancel/publication/332833519_3D_Printed_House_for_Disaster_Affected_Areas/links/5ccbe4d54585153c8c6839f7/3D-Printed-House-for-Disaster-Affected-Areas.pdf
Davidson, J. R., Appuhamillage, G. A., Thompson, C. M., Voit, W., & Smaldone, R. A. (2016). Design paradigm utilizing reversible Diels–Alder reactions to enhance the mechanical properties of 3D printed materials. ACS applied materials & interfaces, 8(26), 16961-16966. https://doi.org/10.1021/acsami.6b05118
Dörfler, K., Dielemans, G., Leutenegger, S., Jenny, S. E., Pankert, J., Sustarevas, J., Lachmayer, L., Raatz, A., & Lowke, D. (2024). Advancing construction in existing contexts: Prospects and barriers of 3d printing with mobile robots for building maintenance and repair. Cement and Concrete Research, 186, 107656. https://doi.org/10.1016/j.cemconres.2024.107656 El-Sayegh, S., Romdhane, L., & Manjikian, S. (2020). A critical review of 3D printing in construction: Benefits, challenges, and risks. Archives of Civil and Mechanical Engineering, 20(2), 1-25. https://doi.org/10.1007/s43452-020-00038-w
Feng, L., & Yuhong, L. (2014). Study on the status quo and problems of 3D printed buildings in China. Global Journal of Human-Social Science Research, 14(5), 1-4. https://doi.org/10.3390/buildings14051216
García-Alvarado, R., Moroni-Orellana, G., & Banda-Pérez, P. (2021). Architectural evaluation of 3D-printed buildings. Buildings, 11(6), 254. https://doi.org/10.3390/buildings11060254
García-Alvarado, R., Moroni-Orellana, G., & Banda, P. (2022). Development of variable residential buildings with 3D-printed walls. Buildings, 12(11), 1796. https://doi.org/10.3390/buildings12111796
Garcia-Alvarado, R., Soza-Ruiz, P., Valenzuela-Astudillo, E., Martuffi-Lazo, D., & Duarte, J. P. (2024). Development of a Generative Design System for 3D-Printed Houses in Chile. Buildings, 14(9), 2939. https://doi.org/10.3390/buildings14092939
Gebhard, L., Mata-Falcón, J., Anton, A., Dillenburger, B., & Kaufmann, W. (2021). Structural behaviour of 3D printed concrete beams with various reinforcement strategies. Engineering Structures, 240, 112380. https://doi.org/10.1016/j.engstruct.2021.112380
Ghaffar, S. H., Corker, J., & Fan, M. (2018). Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Automation in Construction, 93, 1-11. https://doi.org/10.1016/j.autcon.2018.05.005
Ghosh, B., & Karmakar, S. (2024). 3D Printing Technology and Future of Construction: A Review. IOP Conference Series: Earth and Environmental Science, https://doi.org/10.1088/1755-1315/1326/1/012001
Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction? Procedia Engineering, 151, 292-299. https://doi.org/10.1016/j.proeng.2016.07.357
Hossain, M. A., Zhumabekova, A., Paul, S. C., & Kim, J. R. (2020). A review of 3D printing in construction and its impact on the labor market. Sustainability, 12(20), 8492. https://doi.org/10.3390/su12208492
Hou, J.-U., Kim, D.-G., Choi, S., & Lee, H.-K. (2015). 3D print-scan resilient watermarking using a histogram-based circular shift coding structure. Proceedings of the 3rd ACM workshop on information hiding and multimedia security, https://doi.org/10.1145/2756601.2756607
Huber, T., Burger, J., Mata‐Falcón, J., & Kaufmann, W. (2023). Structural design and testing of material optimized ribbed RC slabs with 3D printed formwork. Structural Concrete, 24(2), 1932-1955. https://doi.org/10.1002/suco.202200633 Hwang, B.-g., Shan, M., & Supa’at, N. N. B. (2017). Green commercial building projects in Singapore: Critical risk factors and mitigation measures. Sustainable cities and Society, 30, 237-247. https://doi.org/10.1016/j.scs.2017.01.020
Iftekar, S. F., Aabid, A., Amir, A., & Baig, M. (2023). Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers, 15. https://doi.org/10.3390/polym15112519
Khoshnevis, B. (2004). Automated construction by contour crafting—related robotics and information technologies. Automation in Construction, 13(1), 5-19. https://doi.org/10.1016/j.autcon.2003.08.012
Kothapuram, S., Jiawei, S., Mei-Ling, L., & Han, L. DIGITAL VERNACULAR. https://doi.org/10.52842/conf.acadia.2012.187 Leng, Y., Shi, X., Hiroatsu, F., Kalachev, A., & Wan, D. (2023). Automated construction for human–robot interaction in wooden buildings: Integrated robotic construction and digital design of iSMART wooden arches. Journal of Field Robotics, 40(4), 810-827. https://doi.org/10.1002/rob.22154
Lu, B., Li, M., Lao, W., Weng, Y., Qian, S., Tan, M. J., & Leong, K. F. (2018). Effect of spray-based printing parameters on cementitious material distribution. 2018 International Solid Freeform Fabrication Symposium. https://doi.org/10.32656/2018_29sff_symposium_aug13-15_01
Mechtcherine, V., Grafe, J., Nerella, V. N., Spaniol, E., Hertel, M., & Füssel, U. (2018). 3D-printed steel reinforcement for digital concrete construction–Manufacture, mechanical properties and bond behaviour. Construction and Building Materials, 179, 125-137. https://doi.org/10.1016/j.conbuildmat.2018.05.202
Moghayedi, A., Mahachi, J., Lediga, R., Mosiea, T., & Phalafala, E. (2024). Revolutionizing affordable housing in Africa: A comprehensive technical and sustainability study of 3D-printing technology. Sustainable cities and Society, 105, 105329. https://doi.org/10.1016/j.scs.2024.105329
Moretti, M. (2023). WASP in the Edge of 3D Printing. In 3D Printing for Construction with Alternative Materials (pp. 57-65). Springer. https://doi.org/10.1007/978-3-031-09319-7_3
Nadgorny, M., Collins, J., Xiao, Z., Scales, P. J., & Connal, L. A. (2018). 3D-printing of dynamic self-healing cryogels with tuneable properties. Polymer Chemistry, 9(13), 1684-1692. https://doi.org/10.1039/c7py01945a
Natapov, A., Parush, A., Laufer, L., & Fisher-Gewirtzman, D. (2022). Architectural features and indoor evacuation wayfinding: The starting point matters. Safety science, 145, 105483. https://doi.org/10.1016/j.ssci.2021.105483
Petrick, I. J., & Simpson, T. W. (2013). 3D printing disrupts manufacturing: how economies of one create new rules of competition. Research-Technology Management, 56(6), 12-16. https://doi.org/10.5437/08956308x5606193
Rahul, A., Santhanam, M., Meena, H., & Ghani, Z. (2019). 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites, 97, 13-23. https://doi.org/10.1016/j.cemconcomp.2018.12.014
Robayo-Salazar, R., de Gutiérrez, R. M., Villaquirán-Caicedo, M. A., & Arjona, S. D. (2023). 3D printing with cementitious materials: Challenges and opportunities for the construction sector. Automation in Construction, 146, 104693. https://doi.org/10.1016/j.autcon.2022.104693
Schuldt, S. J., Jagoda, J. A., Hoisington, A. J., & Delorit, J. D. (2021). A systematic review and analysis of the viability of 3D-printed construction in remote environments. Automation in Construction, 125, 103642. https://doi.org/10.1016/j.autcon.2021.103642
Song, Y., & Liao, C. (2023). Research on the architectural features and artistic elements of traditional buildings in different regions of Jiangxi, China. Buildings, 13(7), 1597. https://doi.org/10.3390/buildings13071597
Sovetova, M., & Calautit, J. K. (2024). Thermal and energy efficiency in 3D-printed Buildings: Review of geometric Design, materials and printing processes. Energy and buildings, 114731. https://doi.org/10.1016/j.enbuild.2024.114731
Teixeira, J., Zuazua-Ros, A., Jesus, M., Rangel, B., & Sofia Guimarães, A. (2023). How 3DPC Will Transform Architectural Design. In 3D Printing for Construction with Alternative Materials (pp. 1-31). Springer. https://doi.org/10.1007/978-3-031-09319-7_1
Tian, J., Yuan, J., Li, H., Yao, D., & Chen, G. (2021). Advanced surface color quality assessment in paper-based full-color 3D printing. Materials, 14(4), 736. https://doi.org/10.3390/ma14040736
Uppala, S. S., & Tadikamalla, M. R. (2017). A review on 3D printing of concrete-the future of sustainable construction. i-Manager's Journal on Civil Engineering, 7(3), 49. https://doi.org/10.26634/jce.7.3.13610
Volpe, S., Sangiorgio, V., Fiorito, F., & Varum, H. (2024). Overview of 3D construction printing and future perspectives: A review of technology, companies and research progression. Architectural Science Review, 67(1), 1-22. https://doi.org/10.1080/00038628.2022.2154740
Wang, C., & Zhou, Z.-y. (2023). Optical Properties and Lampshade Design Applications of PLA 3D Printing Materials. BioResources, 18(1). https://doi.org/10.15376/biores.18.1.1545-1553
Wilson, T. T., Mativenga, P. T., & Marnewick, A. L. (2023). Sustainability of 3D Printing in Infrastructure Development. Procedia CIRP, 120, 195-200. https://doi.org/10.1016/j.procir.2023.08.035
Wu, P., Wang, J., & Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68, 21-31. https://doi.org/10.1016/j.autcon.2016.04.005
Xiao, J., Ji, G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J., Wang, L., Ding, T., Duan, Z., & Du, S. (2021). Large-scale 3D printing concrete technology: Current status and future opportunities. Cement and Concrete Composites, 122, 104115. https://doi.org/10.1016/j.cemconcomp.2021.104115.
Xiao, J., Liu, H., Ding, T., & Ma, G. (2021). 3D printed concrete components and structures: An overview. Sustain. Struct, 1(000006), 10-54113. https://doi.org/10.54113/j.sust.2021.000006
Youssef, M., & Abbas, L. (2023). Applying 3d printing technology in constructing sustainable houses. Architecture and Planning Journal (APJ), 29(1), 4. https://doi.org/10.54729/2789-8547.1190
Yuan, J., Chen, C., Yao, D., & Chen, G. (2020). 3D printing of oil paintings based on material jetting and its reduction of staircase effect. Polymers, 12(11), 2536. https://doi.org/10.3390/polym12112536
Zhang, Y., He, M., Wang, L., Yan, J., Ma, B., Zhu, X., Ok, Y. S., Mechtcherine, V., & Tsang, D. C. (2022). Biochar as construction materials for achieving carbon neutrality. Biochar, 4(1), 59. https://link.springer.com/article/10.1007/s42773-022-00182-x
Tofani, L., et al. (2019). “Building the Future: 3D Printing in Architecture.” *Journal of Building Technology*. https://doi.org/10.1016/b978-0-323-58118-9.05001-6