Classification of Load Bearing Patterns in Architectural Structures Based on a Bionic Approach (Case Study: Bending Structures)

Document Type : Research Paper


1 Assistant Professor, Department of Architecture, Faculty of Art and Architecture, University of Mazandaran, Babolsar, Iran.

2 Ph.D. Candidate of Islamic Architecture, Department of Architecture, Faculty of Architecture and Urbanism, Art University of Isfahan, Isfahan, Iran.


As a scientific discipline, Bionics deals with the technical implementation and application of construction, process and development principles of biological systems. Also Bionics is the link between biology (with technical biology) and technology. The most sensible way of introducing suggestions from nature via the medium of bionics is the interface between evaluation and implementation. This procedure means a targeted search for possible solutions from nature for an existing technical problem. Inspiration from nature to respond to scientific issues in various fields of knowledge is the goal of bionics in various disciplines, which has also accepted various roles in the design and construction of architectural structures. The bionic approach has always included various attractions and has been a source of inspiration in the field of architectural and structural design and construction. Having structural designs that are the result of millions of years of evolution in nature provides a good opportunity to study their load bearing behavior. In the meantime, in order to increase the understanding of the relationship between structures in nature and structures in architecture, the solution and attitude of nature against environmental forces through the most efficient structural arrangements can be expanded in the introduction of load bearing patterns for architectural structures. In this regard, the main goal of this research is to determine the various aspects of load patterns by surveying various examples of existing structures from natural and architectural structures. Interfaces must be developed that enable the architect to move easily and safely in this extremely complex subject area of natural systems. The architects is used to being firm in his everyday work in different subject areas and to acting as a moderator between the specialist disciplines. In the presented discussion, it is necessary to pay close attention to the complex process of transferring these load patterns from nature to the domain of architectural structures. It is logical to transfer patterns from nature to the structural domain, because they are the result of a very complex evolutionary process. On the other hand, this high complexity is what makes their direct application, i.e. mere imitation, in structural engineering problems very difficult. In this article, by relying on a descriptive and analytical method and using the literature of the main areas of research, load bearing patterns in these types of structures have been explained in the form of a two-aspect investigation, including the structural solution approach and the nature of the structure solution. In the first aspect, the structural response type and in the second aspect, the characteristics of the structure's response to environmental forces are discussed. Research findings and results indicate that instead of maximum resistance to force, natural structures mainly use force management and control methods. Nature always tries to neutralize or repel all or part of them, instead of maximum resistance against the applied loads, increasing the transfer of forces and receiving the maximum tension, according to the nature of approaches and load solutions. Therefore, in nature, the force management method is always considered along with force resistance.


Main Subjects

 آصفی، مازیار؛ احمدنژاد کریمی، مجید (1397)، جایگاه سازه در فرایند طراحی معماری، تبریز: انتشارات دانشگاه هنر اسلامی تبریز.  تقی‌زاده، کتایون؛ متینی، محمدرضا؛ کاکوئی، الناز ( 1398)، ساختارهای انعطاف‌پذیر؛ راه‌کاری در جهت کاهش معضلات عملکردی پوسته‌های متحرک، ، نشریه علمی پژوهشی هنرهای زیبا، دوره بیست و چهارم، شماره 2، صص 39-48.
 تقی‌زاده، کتایون (1385)، آموزه‌هایی از سازه‌های طبیعی، درس‌هایی برای معماران، نشریه علمی پژوهشی هنرهای زیبا. دوره یازدهم، شماره 28، صص 75-84.
 جلالی، آذین؛ گلابچی، محمود (1397)، طراحی سازه‌های پیش‌ساخته و پایدار با رسوب نمک با الهام از الگوی بهینه‌سازی مصرف مصالح در استخوان ترابکولار انسان، نشریه هویت شهر، دوره دوازدهم، شماره 33. صص 5-12.
 درویزه، ابوالفضل؛ شفیعی، ندا؛ درویزه، منصور؛ حبیب‌الهی، حمیدرضا؛ رجبی، حامد (1393)، بررسی تأثیر اجزای ساختاری بر رفتار بیومکانیکی بال عقب ملخ صحرایی، نشریه مهندسی مکانیک مدرس، دوره چهاردهم، شماره 14. صص 235- 244.
 شاهرودی، عباسعلی؛ گلابچی، محمود؛ اربابیان، همایون (1386)، بهره‌گیری از طبیعت برای آموزش موثر درس ایستایی در رشتة معماری در ایران، ، نشریه علمی پژوهشی هنرهای زیبا. دوره سی ویکم، شماره 5. صص 47-56.
 لفافچی، مینو؛ جهاندار، نسیم (1400)، انسان، طبیعت، معماری، تهران: انتشارات عصر کنکاش.
 مددی، حسین؛ ایمانی، مرضیه (1397)، فناوری بایومیمیک و الهام از طبیعت، نقش‌جهان، مطالعات نظری و فناوری‌های نوین معماری و شهرسازی. دوره هشتم، شماره 1، صص 47-55.
 Al-Sehail, O. (2014), Burj Khalifa as a Technical Object: Re-visualizing the Technological Innovation of the World’s Tallest Building through Simondon’s Philosophy, master’s thesis, McGill University.
 Arslan, S. Sorguc, A. G. (2004), Similarities between structures in nature and man-made structures: biomimesis in architecture, Journal of Design and Nature II, Vol. 180, pp. 45-54.
 Beukers, A. Hinte, E. Vincent, J. (1998), Lightness: The Inevitable Renaissance of Minimum Energy Structure, The Netherlands: 010 Publishers: Rotterdam.
 Chayaamor-Heil, N. (2018), The Impact of Nature inspired algorithms on Biomimetic approach in Architectural and Urban design. In Proceedings of the Conference on Biomimetic and Biohybrid Systems, Living Machines, Paris, France, 17–20 July 2018.
 Elmeligy, D.A. (2016), Biomimicry for ecologically sustainable design in architecture: a proposed methodological study, Proceedings of the 6th International Conference on Harmonisation between Architecture and Nature (ARC 2016), Spain, pp. 45-57.
 Fratzl, P. Weinkamer, R. (2007). Nature’s hierarchical materials, elsevier (Materials Science), Vol.52, No.8, PP. 1263-1334.  Garcia, A.p. Martínez, F.G. (2009), Natural structures: Strategies for geometric and morphological optimization, Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures. Pp. 892-906.
 Gruber P. (2011), Biomimetics in Architecture: Architecture of Life and Buildings, New York: Springer Wien.
Hensel, M. Menges, A. Weinstock, M. (2004), Fit Fabric: Versatility through Redundancy and Differentiation, Architectural Design: Emergence: Morphogenetic Design Strategies, Vol. 40, pp. 40-48.
 Konstantinova, N. Barbara K. Luschnig, CH. (2021). Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response. International Journal of Molecular Sciences 22, no. 5: 2749.
 Libonati, F. Grace, X. Gu. Qin, Z.; Vergani, L.; Buehler, M.J. (2016), Bone-Inspired Materials by Design: Toughness Amplification Observed Using 3D Printing and Testing. Adv. Eng. Mater, Vol. 18, pp. 1354–1363.
 Macdonald, A.J. (2019). Structure and Architecture. Third Edition. New York: Routledge Press.
 MacKinnon, R.B. Oomen, J. Pedersen Zari, M. (2020), Promises and Presuppositions of Biomimicry, Biomimetics, Vol. 5, No. 3, 33.
 Nejati, F. Habib, F. Shahcheraghi, A. (2018), Conceptual Model of Effect and Form of Architecture and Structures, Journal of Appl. Sci. Environ. Manage, Vol. 22, No. 8, pp. 1251-1256.
Neville, A.C. Thomas, M.G. Zelazny, B. (1969), Pore canal shape related to molecular architecture of arthropod cuticle. Tissue Cell, Vol.1, pp. 183–200.
 Nowak, A. Rokicki, W. (2018), Bionic forms in search of structural models in architecture, MATEC Web of Conferences, Vol. 174, 03020. 10.1051/matecconf/201817403020.
 Otto, F. (1982), Natürliche Konstruktionen: Formen und Konstruktionen in Natur und Technik und Prozesse Ihrer Entstehung; Munich: Deutsche Verlags-Anstalt.
 Panchuk, N. (2006), An exploration into biomimicry and its application in digital & parametric, Master thesis, Waterloo, Ontario, Canada.
Potschin, M. Kretsch, C. Haines-Young, R., E. Furman. (2015), Nature-based solutions. OpenNESS Ecosystem Service Reference Book, EC FP7 Grant Agreement no. 308428.
 Rey-Rey, J. (2022), Nature as a Source of Inspiration for the Structure of the Sydney Opera House. Biomimetics, Vol. 7, 24. 
Rouhizadeh, A.R. Hafezi, M.R. Farokhzad, M. Panahi, M. (2019), Inspiration from Nature in the Training of Structural Design in Architecture, Bagh-e Nazar, Vol. 15, No. 68, PP. 59-64.
 Sarkisian, M. (2012), Designing Tall Buildings: Structure as Architecture, New York: Routledge.  Shama, M. (2010), Torsion and shear stresses in ships, NewYork: Springer Heidelberg.
 Silver, P. McLean, w. Evans, P. (2013), Structural Engineering for Architects: A Handbook. London: Laurence King Publishing.
Sumec, J. Jendželovský, N. Kormaníková, E. Kotrasová, E.K. (2010), Architectural Bionics in Civil Engineering. Media4u Magazine, Vol. 7, No. 2, pp. 122-131.
 Vincent, J. (2001), Deployable structures in nature, centre for biomimetic, Part of the International Centre for Mechanical Sciences book Series, University of Reading, UK, pp. 37-50.
 Vincent, J., Bogatyreva, O.A, Bogatyrev, N.R., Bowyer, A. Pahl, A. (2006), Biomimitics – its practice and theory, Journal of the Royal Society Interface, Vol. 3, pp. 9471–482, 2006.
 Vogel, S. (2000), Cats’ Paws and Catapults: Mechanical Worlds of Nature and People, New York: W. W. NORTON & CO.
 Wilson J.O. (2008), A systematic approach to bio-inspired conceptual design, Phd Thesis, Georgia Institute of Technology, p. 7.
 Wootton R. (2020), The Geometry and Mechanics of Insect Wing Deformations in Flight: A Modelling Approach, Insects, Vol. 11, No. 7, 446.
Zorzetto, L. Ruffoni, D. (2019), Wood-Inspired 3D-Printed Helical Composites with Tunable and Enhanced Mechanical Performance .Adv. Funct. Mater, Vol. 29, pp. 1805888.