Analysis of a Building in Susa based on Animal Biology with Emphasis on Optimization Method with Multi-Purpose Genetic Algorithm

Document Type : Research Paper

Authors

1 Master Student of Architecture, Department of Architecture, Faculty of Architecture and Urban Planning, Jundi Shapur University of Technology, Dezful, Iran.

2 Associate Professor, Department of Architecture, Faculty of Architecture and Urban Planning, Jundi Shapur University of Technology, Dezful, Iran.

3 Assistant professor, Department of Architecture, Faculty of Architecture and Urban Planning, Jundi-Shapur University of Technology, Dezful, Iran

Abstract

Bioinspired design is a term that is generally accepted as an umbrella category for design and engineering approaches. While biomimicry is a type of bioinspired design, not all bio inspired design qualify as biomimicry. An important factor that differentiates biomimicry from other bio-inspired design approaches is the emphasis on learning from and emulating the regenerative solutions living systems have for specific functional challenges. Innovators turn to biomimicry with the hope of achieving a unique product that is efficient and effective, but they often gain a deep appreciation of and connection to the natural world. Biomimicry encourages conservation for ecosystems and its inhabitants, because they hold the knowledge we need to survive and thrive.  Nature has been the most important source of inspiration for architects in building construction or architectural ideas. Biomimetic is a human-made process that mimics nature not limited by its aesthetic configurations, but is based on nature, measure and mentor, and therefore its construction process, or its geometry and spatiality, must be dynamic, optimized and perhaps adaptable to local conditions resulting in an innovative and efficient architecture. In this research, by examining the nature-compatible characteristics of the agama lizard indigenous to the Susa region, an attempt is made to study the adaptive method of building architecture with the hot and humid climatic conditions of Susa region by designing a building. Geographically, Susa is located near the three rivers of Dez, karkheh and Shawoor. It was surrounded by rich lands where agriculture, hunting and animal breeding were vastly practiced. The research method in this article is based on field methods and software simulation. The information is collected in the form of library studies, environmental data and field observations. Some of the challenges are that it requires a large number of runs to adequately explore a design space, it often relies on statistical methods that are not easily accessible to architectural practitioners, and the reporting mechanisms do not suit architectural design exploration, among others. The analysis tool in this research is Energy Plus software based on HAMT algorithm and optimization method with multi-objective genetic algorithm using jEPlus interface software and jEPlus + EA optimizer software. jEPlus+EA can only use parameters defined in a valid jEPlus project as variables. This means all variables are considered as discrete during optimization. Hence, the authors have studied the three agamas of Phrynocephalus Arabicus Traplus roderatus and Saralorikata. Based on the morphological-climatic analogy between the animal and the building, they have pointed out how the shell of the building is organized based on the characteristics of the animal's skin. Variables such as the morphological characteristics of the shell, thickness, direction and arrangement of the outer wall layers of the building have been considered. Drawing on insights from Agama skin organization, moisture control mechanisms, solar radiation absorption, and shell orientation, the study proposes a climate-compatible architectural framework informed by nature's adaptive strategies.

Keywords

Main Subjects


  • جزایری، ا.) 1398)، ویژگی‌های خزندگان؛ سوسمارها. استادیار بخش زیست شناسی دانشکده علوم دانشگاه شهیدچمران اهواز. مصاحبه کننده: صدیقه سلاطی..1398/12/2

    - دلگرم، ن، (1394)، مدلسازی عددی و بهینه‌سازی تأثیر پارامترهای معماری بر مصرف انرژی ساختمان. پایان‌نامه کارشناسی ارشد مهندسی مکانیک، بهرنگ سجادی (استاد راهنما)، دانشکده مهندسی مکانیک دانشگاه تهران

    -فرشی حقی, محمودی نژاد, ناصری, داداشی. (1400). ارزیابی کاربست دانش بیومیمیکری در آموزش طراحی معماری با روش قیاس از طبیعت. معماری و شهرسازی پایدار, 9(2), 112-97.

    قارونی ف, عمرانی پور ع, یزدی م. (1392) طراحی معماری با رویکرد بیونیک، نمونه موردی طراحی پوسته های معماری با الهام از صدف آبالون.‎ معماری و شهرسازی آرمان شهر، دوره:5 ، شماره:11، :127-140

    قیابکلو. ز(2013). طراحی آکوستیکی سالن همایش چند منظوره با الهام از پوستة صدف دریایی. نشریه هنرهای زیبا-معماری و شهرسازی, 18(شماره 3), 17-24.‎

    -گودرزی، ع. (1395)، مدل سازی عددی و بهینه سازی ساختار جدار خارجی ساختمان با در نظر گرفتن انرژی تولید. پایان‌نامه کارشناسی ارشد مهندسی مکانیک، بهرنگ سجادی(استاد راهنما)، دانشکده مهندسی مکانیک دانشگاه تهران

    -مجنونیان، ه، کیابی، ب و دانش م.(1384). جغرافیای جانوری ایران. جلد2. تهران: انتشارات دایره سبز. چ اول. سازمان حفاظت محیط زیست.

    واتسون، د و کنت ل.( 1400) ، طراحی اقلیمی: اصول نظری و اجرایی کاربرد انریی در ساختمان. ترجمه وحید قبادیان و محمد فیض مهدوی. تهران. موسسه انتشارات دانشگاه تهران. چ دوازدهم.

    میرحسینی, م, انصاری, بمانیان. (2020). تبیین معیارهای حیات مبتنی بر علم بیونیک در برنامه ریزی و طراحی سکونتگاه های انسانی. پژوهشهای جغرافیای انسانی, 52(2), 569-588

    .‎ - Al-Obaidi, Karam M., Ismail, M A., Hussein, Hazreena., AR, Abdul Malik. (2017). Biomimetic building skins: An adaptive approach. Renewable and Sustainable Energy Reviews 79 -1472–1491.

    • Badarnah, L. (2018). Environmental adaptation of buildings through morphological differentiation: a biomimetic approach. Advanced Building Skins Conference, 1-2 October 2018, Bern, Switzerland.
    • - Baumeister, D. (2012). Biomimicry Resource Handbook: ASeed Bank of Knowledge and Best Practices. Missoula: Applications, Published by John Wiley & Sons, Inc., Hoboken, New Jersey, ISBN 978-0-470-58246- 6, 378 pages.
    • - Benyus, J. M. (2002). Biomimicry: Innovation Inspired by Nature. New York: Harper Collins Publishers. Biomimicry 3.8 -
    • Cohen, Y.H. and Reich, Y. (2016). Biomimetic Design Method for Innovation and Sustainability. DOI 1007/10/978-3-319-33997-9. Library of Congress Control Number: 2016938673. © Springer International Publishing Switzerland.p. 26.
    • - Comanns, P., Effertz, C., Hischen, F., Staudt, K., Böhme, W. (2011). Moisture harvesting and water transport through specialized micro-structures on the integument of lizards. Beilstein J Nanotechnol. 2011; 2: 204–214. Doi: 10/3762/bjnano.2/24
    • - Drack, M., Limpinse, M., de Bruyn, G., J H Nebelsick, J H., Betz, O. (2017). Towards a theoretical clarification of biomimetics using conceptual tools from engineering design. Bioinspir. Biomim. 13- 016007.
    • - Gebeshuber, I., Drack, M. (2008). An attempt to reveal synergies between biology and mechanical engineering. In Proc. of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(7), p. 1281–1287
    • - Goel, A.K., Rugaber, S., and Vattam, S. (2009). Structure, behavior, and function of complex systems: the structure, behavior, and function modeling language. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM), 23(1), p. 23–35.
    • - Helms, M., Vattam, S.S., and Goel, A.K. (2009). Biologically inspired design: process and products. Design Studies, 30(5), p. 606–622
    • - Hesselberg, T. (2007). Biomimetics and the case of the remarkable ragworms. Naturwissenschaften, 94(8), p. 613–621.
    • - Iouguina, A., Dawson, J.W., Hallgrimsson, B., and Smart, G. (2014). Biologically Informed Disciplines: a comparative analysis of bionics, biomimetics, biomimicry, and bio-inspiration among others. Int. J. of Design & Nature and Ecodynamics. Vol. 9, No. 3 -197–205
    • - Mazzoleni. I. (2013). Architecture follows nature biomimetic principles for innovative design. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742. p 26
    • - Pareto, V., Rouge, F. (1896). Cours d Economie Politique. 438 pages.
    • - Schwenk, Kurt. Greene, Harry W. (1987). Water Collection and Drinking in Phrynocephalus helioscopus: A Possible Condensation Mechanism. Journal of Herpetology, Vol. 21, No. 2. (Jun., 1987), pp. 134-139
    • - Sherbrooke, W.C. (1990). Rain-harvesting in the lizard, Phrynosoma cornutum: behavior and integumental morphology. Journal of Herpetology. 24. 302-308
    • - Sherbrooke, W.C. (1993). Rain-drinking behaviors of the Australian Thorny Devil (Sauria: Agamidae). Journal of Herpetology. 27. 270-275
    • - ŠMÍD, J., Moravec, J., Kodym, P., Kratochvíl, L., Yousefkhani, S. S. H., & FRYNTA, D. (2014). Annotated checklist and distribution of the lizards of Iran. Zootaxa, 3855(1), 1-97. ‏ - Speck, T., Speck, O., Beheshti, N., McIntosh, AC. (2008). Process sequences in biomimetic research. Design and Nature, 4, p. 3–11.
    • - Taghdisian, H., Pishvaie, M.R., Farhadi, F. (2014). Multi-objective optimization approach for green design of methanol plant based on CO2-efficeincy indicator. Journal of Cleaner Production.
    • - Veselý, M.; Modrý, D. J.(2002). Herpetol. 36, 311–314. doi: 10/2307/1566009