The Effective Components in Prefabricated Housing Design : a Systematic Review

Document Type : Research Paper


1 Master of Architectual Technology, Department of of Architecture, Faculty of Architecture and Urban Planning, Iran University of Science and Technology, Tehran, Iran.

2 Associate Professor, Department of of Architecture, Faculty of Architecture and Urban Planning, Iran University of Science and Technology, Tehran, Iran.


On one hand the rapid population growth and increasing demand for housing, and on the other hand the need to reduce the delivery time of construction projects and accelerate capital return, necessitate the transition from traditional construction methods to industrialization. Moving towards industrialization responds to the current demand of the society and it also has a very positive effect on the construction speed, quality and the final cost of the building. It is also capable of increasing the production and establishing a balance between supply and demand. Therefore, by considering the widely expressed advantages of building industrialization and the efforts of governments to take advantage of this, it seems that the effective implementation of this process depends on the identification and application of the effective components in design. Despite manifold empirical studies on these components, the dispersion and lack of a conceptual framework for their classification reveals the necessity of conducting a comprehensive examination in this regard. The purpose of this research is to identify the effective components in the design of prefabricated houses. This paper uses the Sandelowski and Barroso’s Meta-Synthesis to systematic review the sources and analyse all the qualitative data for components identification. By extracting the components and integrating similar cases, a broad classification framework was proposed for categorization of the components into environmental, technical, economic, functional, socio-cultural, aesthetics and climatic groups. Examining the components abundance for internal and external sources has also identified the most frequent ones, which is a guide for designers in prioritizing effective components in the design process. The hierarchies of frequency of groups are almost consistent with each other, and technical, environmental and functional groups have been the most frequent groups among internal and external sources, respectively.
In addition to forming an integrated conceptual framework based on the mandatory/recommended hierarchical structure, the number of components and their abundance in each group, this research has applied the use of components and it can be a basis for proposing design improvement strategies in prefabricated housing. An overview to the conceptual framework indicates that: the use of modularity theory for dividing the building components in the technical group, saving energy and materials in the environmental group, providing flexibility in the functional group, saving the Initial costs in the economic group, reducing nuisance for neighbours and passages and considering the market and regional demand for the selection of materials and components in the socio-cultural group, providing appropriate temperature and ventilation in the form of providing environmental comfort in the climatic group and taking advantage of diversity and avoiding monotony in the facade and composition of building components in the group of aesthetics are the most frequent and effective components in the seven groups of prefabricated housing design, and considering them is necessary for design. The reliability and validity of the results were investigated by the use of Cohen's kappa coefficient. In the present study this coefficient is at the significant level of 0.007 equal to 0.750 and this amount confirms the reliability of the research.


Main Subjects

1. Ahmad Bari , N. A., Abdullah , N. A., Yusuff , R., Ismail , N. & Jaapar, A. (2012). Environmental Awareness and Benefits of Industrialized Building Systems (IBS). Procedia - Social and Behavioral Sciences, 50, 392-404.
2. Benkő, M. (2015). Budapest’s large prefab housing estates: Urban values of yesterday, today and tomorrow. Hungarian Studies ,29(1-2), 21-36.
3. Bras, A., Ravijanya, C., Sande, V. T. d., Riley, M. & Ralegaonkar, R. V. (2020). Sustainable and affordable prefab housing systems with minimal whole life energy use. Energy and Buildings, 220, 110030.
4. Cao, X., Li, X., Zhu, Y. & Zhang, Z. (2015). A comparative study of environmental performance between prefabricated and traditional residential buildings in China. Journal of Cleaner Production ,109, 131-143.
5. Correia, A. L., Murtinho, V. & Silva, L. S. d. (2013). Housing industrialization, success and failure, universal and local: Limits for housing globalization, In C. International Conference on Structures and Architecture (ICSA), Guimarães.
6. Cui, Y., Li, S., Liu, C. & Sun, N. (2020). Creation and Diversified Applications of Plane Module Libraries for Prefabricated Houses Based on BIM. Sustainability, 12(2), 453.
7. Dave, M., Watson, B. & Prasad, D. (2017). Performance and perception in prefab housing: An exploratory industry survey on sustainability and affordability. Procedia Engineering, 180, 676-686.
8. Dharmawan, C. & Alviano, M. (2019). Pre-fabricated Material for Modular House, In C. IOP Conf. Series: Materials Science and Engineering 662.
9. Dijokienė, D. & Džervus, P. (2011). XX A. Masinės Statybos Gyvenamųjų Kompleksų Fenomenas Lietuvoje Europiniame Industrinės Statybos Kontekste. Town Planning and Architecture,35(2), 92-103.
10. Du, Q., Bao, T., Li, Y., Huang, Y. & Shao, L. (2019). Impact of prefabrication technology on the cradle‑to‑site CO2 emissions of residential buildings. Clean Technologies and Environmental Policy, 21, 1499-1514.
11. Erduran, D. U. (2020). Precast Block Houses Built in the 1950s and Urban Mining Potential. Construction of Unique Buildings and Structures, 91(9102).
12. Erofeev, N. (2019). The I-464 Housing Delivery System: A Tool for Urban Modernisation in the Socialist World and Beyond. Fabrications, 29(2), 207-230.
13. Ferdous, W., Bai, Y., Ngo, T. D., Manalo, A. & Mendis, P. (2019). New advancements, challenges and opportunities of multi-storey modular buildings – A state-of-the-art review. Engineering Structures, 183, 883-893.
14. Friedman, A., Sprecher, A. & Mohamed, B. E. (2013). A Computer- Based System for Mass Customization of Prefabricated Housing.Open House International ,38(1), 20-30.
15. Gan,S.&Zhang,H.(2013).Application of Virtual Construction Technology in Green Construction.Applied Mechanics and Materials,368-370,1139 1142.
16. Gan, S. & Zhang, H. (2021).Research on Maintainability and Renewability of SI Housing, In C. IOP Conf.Series: Earth and Environmental Science787.
17. Gan, S., Zhang, H. & Yang, Y. (2014). The Discuss of the Development of Residential Industrialization in the New Period. Advanced Materials Research ,912-914, 1813-1816.
18. Ganiron Jr, T. U. (2016). Development and Efficiency of Prefabricated Building Components. International Journal of Smart Home, 10(6), 85-94.
19. Gatheeshgar, P., Poologanathan, K., Gunalan, S., Tsavdaridis, K. D., Nagaratnam, B. & Iacovidou, E. (2020). Optimised cold-formed steel beams in modular building applications. Journal of Building Engineering, 32, 101607.
20. Grębowski, K. & Kałdunek, D. (2017). Using Container Structures in Architecture and Urban Design, In C.IOP Conference Series Materials Science and Engineering.
21. Huunka, S., Kaasalainen, T., Hakanen, J. H. & Lahdensivu, J. (2015). Reusing concrete panels from buildings for building: Potential in Finnish 1970s mass housing. Resources, Conservation and Recycling ,101, 105-121.
22. Iacovidou, E., Purnell, P., Tsavdaridis, K. D. & Poologanathan, K. (2021). Digitally Enabled Modular Construction for Promoting Modular Components Reuse: A UK View. Journal of Building Engineering, 42(3), 1-21.
23. Iuorio, O., Napolano, L., Fiorino, L. & Landolfo, R. (2019 a). The environmental impacts of an innovative modular lightweight steel system: The Elissa case. Journal of Cleaner Production, 238, 117905.
24. Iuorio, O., Wallace, A. & Simpson, K. (2019 b). Prefabs in the North of England: Technological, Environmental and Social Innovations. Sustainability, 11, 1-15
. 25. Jiang, B., Zhang, Q. & Lau, S. S. Y. (2018). Energy Conservation-Oriented Residential Prefabs for Sustainability in Nanjing, In C. International Conference on Green Energy and Applications (ICGEA), Singapore.
26. Jiang, H. & Ban, Q. (2013). A study on application of supportive housing in Chinese affordable housing. Applied Mechanics and Materials ,357-360, 2393-2397.
27. Jiang, Y., Zhao, D., Wang, D. & Xing, Y. (2019). Sustainable Performance of Buildings through Modular Prefabrication in the Construction Phase: A Comparative Study. Sustainability, 11, 1-14.
28. Jin, R., Gao, S., Cheshmehzangi, A. & Aboagye-Nimo, E. (2018). A holistic review of off-site construction literature published between 2008 and 2018. Journal of Cleaner Production, 202, 1202-1219.
29. Jung, H. T. (2018). The Impact of Measurement Research on Prefabrication and Modulation in SOM’s Postwar Housing and Office Buildings. Technology|Architecture + Design, 2(2), 196-205.
30. Kedir, F. & Hall, D. M. (2021). Resource efficiency in industrialized housing construction – A systematic review of current performance and future opportunities. Journal of Cleaner Production, 286, 125443.
31. Khubaev, A. O., Saakyan, S. S. & Makaev, N. V. (2020). World Practice In The Field of Modular Construction. Construction and Geotechnics, 11(2), 99-108.
32. Kim, M. K. & Kim, M. J. (2016). Affordable Modular Housing for College Students Emphasizing Habitability. Journal of Asian Architecture and Building Engineering, 15(1), 49-56.
33. Kirschke, P. & Sietko, D. (2021). The Function and Potential of Innovative Reinforced Concrete Prefabrication Technologies in Achieving Residential Construction Goals in Germany and Poland. Buildings, 11,553.
34. Knyziak, P.(2019).The impact of construction quality on the safety of prefabricated multi-family dwellings. Engineering Failure Analysis, 100, 37-48.
35. Lee, C. J. & Lim, S. H. (2015). An Analysis on Architectural Characteristics of Domestic Modular Housing and Building Material Standardization Effect through MC Design. Journal of the Korean Housing Association ,26(6), 103-113.
36. Lee, C. J. & Lim, S. H. (2012).Study on the Application of Modular Technologies to Han-ok. Journal of the Korean Housing Association,23(4),49-57.
37. Lee, D. H. & Kim, K. T. (2013). A fundamental study for applying of Unit modular housing production system in the domestic. Korean Journal of Construction Engineering and Management ,14(5), 3-11.
38. Liu, S., Zhongfu, L., Teng, T. & Dai, L. (2021). A dynamic simulation study on the sustainability of prefabricated buildings, Sustainable Cities and Society, 77, 103551.
39. Lopez, D. & Froese, T. M. (2016).Analysis of costs and benefits of panelized and modular prefabricated homes.Procedia Engineering,145, 1291- 297.
40. Lovell, H. (2012). Modern Methods of Construction. In International Encyclopedia of Housing and home (Vol. 4, pp. 312-316). Edinburgh: Oxford.
41. Lu, W. & Yuan, H. (2013). Investigating waste reduction potential in the upstream processes of offshore prefabrication construction. Renewable and Sustainable Energy Reviews ,28, 804-811.
42. Marchesi, M. & Matt, T., D. (2017). Design for Mass Customization: Rethinking Prefabricated Housing Using Axiomatic Design. Journal of Architectural Engineering , 23(3), 1-20.
43. Marine, A. G., Corpa, J. B., Cepeda, J. T., Higueras, J. de la C. & Tejero, J. A. (2015). Self-Sufficient Prefabricated Modular Housing: Passive Systems Integrated. In Renewable Energy in the Service of Mankind (Vol. 1, pp. 659-674). Malaga: Springer International Publishing.
44. Michael, A., Savvides, A., Vassiliades, C. & Triantafyllidou, E. (2020). Design and Creation of an Energy Efficient Prefabricated Housing Unit based on Specific Taxonomy and Optimization Techniques. Procedia Manufacturing, 44, 261-268.
45. Nazir, F., Edwards, D. J., Shelbourn, M., Martek, I. Thwala, W. D. D. & El-Gohary, H. (2021). Comparison of modular and traditional UK housing construction: a bibliometric analysis. Journal of Engineering Design and Technology (ahead-of-print).
46. Nikolic, J. (2018). Building “with the Systems” vs. Building “in the System” of IMS Open Technology of Prefabricated Construction: Challenges for New “Infill” Industry for Massive Housing Retrofitting. Energies, 11(5), 1128.
47. O’brien, M. J. (2015). Success and Failure in Industrialized Prefabricated Housing. Proceedings of International Structural Engineering and Construction ,2(1), 1217-1222.
48. Ocampo, J. S. (2017). Industrialized Housing: Background in the World and Proposal to Social Housing Deficit in Colombia. Cuadernos de Vivienda y Urbanismo, 10(20), 79-96.
49. Oleynik, P. & Pakhomova, L. (2021). A new stage in the development of housing construction, In C.Web of Conferences 258.
50. Oorschot, J. A. W. H. v., Halman, J. I. M. & Hofman, E. (2021). The adoption of green modular innovations in the Dutch housebuilding sector. Journal of Cleaner Production, 319, 128524.
51. Pavlenko, D. V., Shmelev, S. E., Kuznetsov, D. V., Sapronov, D. V., Fisenko, S. S. & Damrina, N.V. (2019). Universal System of Prefabricated Housing Construction RB-South–from the Idea to Implementation on the Construction Site. Stroitel’nye Mareriality [construction Materials], 3, 4-10.
52. Pour Rahimian, F., Goulding, J., Akintoye, A. & Kolo, S. (2017). Review of Motivations, Success Factors, and Barriers to the Adoption of Offsite Manufacturing in Nigeria. Procedia Engineering, 196, 512-519.
53. Rockwood, D., Silva, J. T. D., Olsen, S., Robertson, I. & Trun, T. (2015). Design and prototyping of a FRCC modular and climate responsive affordable housing system for underserved people in the Pacific island nations. Journal of Building Engineering ,4(2), 268-282.
54. Shen, K., Cheng, C., Li, X. & Zhang,Z.(2019).Environmental Cost-Benefit Analysis of Prefabricated Public Housing in Beijing.Sustainability,11,1-21.
55. Sidik, A. F., Paramita, B. & Busono, T. (2021). The Comparison of Energy Usage of Modular Housing using Sefaira, In C. IOP Conf. Series: Earth and Environmental Science 738.
56. Soriano, B. S., Gimeno, P. V., Segura, A. D. & Maza, R. M. D. L.(2014). Assembling sustainable ideas: The construction process of the proposal SMLsystem at the Solar Decathlon Europe 2012. Energy and Buildings ,83, 186-194.
57. Terrados-Cepeda, F. J., Baco-Castro, L. & Moreno-Rangel , D. (2015). Patio 2.12: Prefabricated, sustainable, self-sufficient and energy efficient house. Participation in the 2012 Solar Decathlon Competition. Informes de la Construcción ,67, 1-11.
58. Tofiluk, A., Knyziak, P. & Krentowski, J. (2019). Revitalization of Twentieth-Century Prefabricated Housing Estates as Interdisciplinary Issue, In C IOP Conf. Series: Materials Science and Engineering 471.
59. Tumminia, G., Guarino, F., Longo, S., Ferraro, M., Cellura, M. & Antonucci, V. (2018). Life cycle energy performances and environmental impacts of a prefabricated building module. Renewable and Sustainable Energy Reviews, 92, 272-283.
60. Wuni, I. Y. & Shen, G. Q. (2020). Barriers to the adoption of modular integrated construction: Systematic review and meta-analysis, integrated conceptual framework, and strategies. Journal of Cleaner Production, 249, 119347.
61. Yu, S., Liu, Y., Wang, D., Bahaj, A. S., Wu, Y. & Liu, J. (2021). Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China. Renewable and Sustainable Energy Reviews, 13, 710055.
62. Zarrabi, M., Yazdanfar, S. A. A. & Hosseini, S. B. (2020). Usage of lifestyle in housing studies: a systematic review paper. Journal of Housing and the Built Environment, 37, 575-594.
63. Zhang, J. (2012). Life Cycle Management of Prefabricated Housing. Applied Mechanics and Materials ,209-211, 1476-1479.
64. Zhang, X., Skitmore, M. & Peng, Y. (2014).Exploring the challenges to industrialized residential building in China.Habitat International ,41, 176-184.
65. Zhang, X. & Skitmore, M. (2012). Industrialized housing in China: A coin with two sides. International Journal of Strategic Property Management ,16(2), 143-157.
آصفی، مازیار؛ هاشم‌پور، پریسا؛ حمزه نژاد، مهدی و مهاجری، مظفر (1397). میزان همآوایی سیستم های ساخت صنعتی با معیارهای مسکن اسلامی، نشریه مدیریت شهری، شماره 51، صص 343-327.
آصفی، مازیار؛ هاشم‌پور، پریسا و مهاجری، مظفر (1396). امکان سنجی روش های صنعتی سازی ساختمان در تولید مسکن اسلامی، مجله پژوهش های معماری اسلامی، شماره 17، صص 34-15.
اقبالی، رحمان و حصاری، پدرام (1392). روﻳﻜﺮد ﻣﺪوﻻر و ﭘﻴﺶ ﺳﺎﺧﺘﮕﻲ در ﻣﺴﻜﻦ اﻧﻌﻄﺎف ﭘﺬﻳﺮ، نشریه مسکن و محیط روستا، دوره 32، شماره 143، صص 68-53.
ایزدی، حسن؛ عباسپور، زهرا (1399). شناسایی معیارهای موثر بر پیاده‌سازی پروژه‌های توسعه حمل و نقل محور در ایران، نشریه مطالعات مدیریت ترافیک، شماره 56، صص 144-115.
حسینعلی پور، مجتبی و حقیقی، حسین (1389). راﻫﺒﺮد ﺻﻨﻌﺘﯽﺳﺎزی ﺳﺎﺧﺘﻤﺎن در ﭼﺸﻢاﻧﺪاز ﺑﯿﺴﺖ ﺳﺎﻟﻪ ﮐﺸﻮر (ﻣﻄﺎﻟﻌﻪ ﻣﻮردی اﻣﮑﺎنﺳﻨﺠﯽ اﺳﺘﻔﺎده از LSF در ﺗﻬﺮان)، نشریه راهبرد ، شماره 57، صص 339-325.
گلابچی، محمود؛ خلعتبری، رامتین و فاضل، علیرضا (1393). مشارکت بهره برداران در فرایند طراحی تحقق پایداری اجتماعی برای مسکن انبوه ایران؛ نمونه موردی: مسکن شهرک صنعتی پرند، نشریه مدیریت شهری، دوره 13، شماره 35، صص 24-7
نوذری، شعله و رفیع زاده، ندا (1383). راهکارهای تولید مسکن صنعتی در ایران، مجله تکنولوژی مسکن، شماره 105، صص 31-16. هروی، غلامرضا و لایقه، ماهر (1396). بررسی و ارزیابی صنعت احداث ساختمان های پیش‌ساخته بتنی با رویکرد توسعه پایدار با استفاده از تحلیل SWOT، نشریه مهندسی عمران امیرکبیر،دوره 49، شماره 3، صص 618-603.