گلابچی،محمود،خرسندنیکو،محمدرضا.(1393).معماری بایونیک، انتشارات دانشگاه تهران.
Adamatzky, Andrew. (2009). Steering plasmodium with light: Dynamical programming of physarum machine, New Mathematics and Natural Computation Journal, vol. 1, pp. 1-20, arXiv: 0908.0850.
Adamatzky, Andrew. (2013). Slime ware: Engineering Devices with Slime Mold, Artificial Life, vol.19, pp.317–330, doi: 10.1162/ARTL_a_00110.
Adamatzky, Andrew, G. J. Martinez, S.V. Chapa-Vergara, R. AsomozaPalacio, C. R. Stephens. (2011). Approximating Mexican highways with slime mould, Natural Computing, vol. 10, no. 3, pp. 1195–1214.
Alim, K, Amsalem, G, Peaudecerf, F, Brenner, M.P, Pringle, A. (2013). Random network peristalsis in physarum polycephalum organizes fluid flows across an individual, Proceedings of the National Academy of Sciences, vol.110, no.33, pp.13306–13311.
BastosFilho, Carmelo, deLimaNeto, Fernando, Lins, Anthony, Nascimento, Antonio, Lima, Marilia. (2008). A novel search algorithm based on fish school behavior, International Conference on Systems (IEEE), Man and Cybernetics, pp. 2646-2651, doi:10.1109/ICSMC.2008.4811695.
Calis, Gulben. (2015). An Improved Ant Colony Optimization Algorithm for Construction Site Layout Problems, Journal of Building Construction and Planning Research, vol.3, pp.221 – 232, doi: 10.4236/jbcpr.2015.34022.
Chen, Yuxing. (2015). Swarm Intelligence in Architectural Design, [Online]. Available: http://ced.berkeley.edu/downloads/thesis/arch/2015/Chen_Yuxing.pdf. [Accessed: 04-Sep-2016].
Christian, Blum, Daniel, Merkle. (2008). Swarm intelligence: Introduction and applications, Natural Computing Series, Springer, pp.87-100, doi: 10.1007/978-3-540- 74089-6.
Chu, Shu-Chuan, Tsai, Pei-Wei. (2007). Computational intelligence based on the behavior of cats, International Journal of Innovative Computing, Information and Control, vol.3, no.1, pp.163–173.
Cuevas, Erik, Cienfuegos, Miguel, Zaldivar, Daniel, Pérez-Cisneros, Marco. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Systems with Applications, vol.40, no.16, pp.6374–6384, doi:10.1016/j.eswa.2013.05.041.
Dorigo, Marco, Birattari, Mauro. (2007).Swarm intelligence, Scholarpedia, vol.2, no.9, pp.1462.
Dorigo, Marco, Birattari, Mauro, Stutzle, Thomas. (2006). Ant colony optimization, Computational Intelligence Magazine (IEEE), vol.1, no.4, pp.28–39,doi:10.1109/MCI. 2006.329691.
Dorigo, Marco, Maniezzo, Vittorio, Colorni, Alberto. (1996). Ant System: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics – Part B, vol.26, pp.29–41.
Dorigo, Marco, Di-Caro, Gianni. (1999). Ant colony optimization: a new meta-heuristic, Proceedings of the 1999 Congress on Evolutionary Computation, vol.03, pp. 1470-1477, doi:10.1109/cec.1999.782657.
Dressler, Falko, Akan, Ozgur. (2010). Bio-inspired networking: from theory to practice, IEEE Communications Magazine, vol. 48, no. 11, pp. 176– 183, doi: 10.1109/MCOM.2010.5621985.
Duan, Haibin, Qiao, Peixin. (2014). Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning, International Journal of IntelligentComputing and Cybernetics, vol.7, no.1, pp.24–37,doi:10.1108/IJICC-02-2014-0005.
El-Zeiny, RashaMahmoudAli. (2012). Biomimicry as a Problem Solving Methodology in Interior Architecture, Procedia - Social and Behavioral Sciences, vol. 50, pp. 502-512.
Eusuff, Muzaffar, Lansey, Kevin, Pasha, Fayzul. (2006). Shuffled frog-leaping algorithm: a memetic metaheuristic for discrete optimization, Engineering Optimization, vol.38, no.2, pp.129–154, doi: 10.1080/03052150500384759.
Feng, X, Zhang, J, Yu, H. (2014). Mosquito host-seeking algorithm for TSP problem [j], Chinese Journal of computers, vol.37, no.8, pp.1794–1808.
Garnier, Simon, Gautrais, Jacques, Theraulaz, Guy. (2007). the biological principles of swarm intelligence, Swarm Intelligence, vol.1, no.1, pp.3–31, doi: 10.1007/s11721-007-0004-y.
Havens, Timothy, Spain, Christopher, Salmon, Nathan, Keller, James. (2008). Roach Infestation Optimization, Swarm Intelligence Symposium (IEEE), pp.1–7. doi:10.1109/SIS.2008.4668317.
Helms, Michael, Vattam, Swaroop, and Goel, Ashok. (2009). Biologically inspired design: process and products, Design Studies, vol. 30. pp. 606-622.
Howard, Frank. (1931). The Life History of Physarum Polycephalum, American Journal of Botany, vol. 18(2), pp. 116–133, doi:10.1002/j.1537-2197.1931.tb09577.x.
Ito, Kenaro, Sumpter, David, Nakagaki, Toshiyuki. (2010). Risk management in spatiotemporally varying field by true slime mold, Nonlinear Theory and Its Applications, IEICE, vol. 1, no. 1, pp. 26–36, doi: 10.1587/nolta.1.26.
Johnson, Steven. (2001). Emergence: the connected lives of ants, brains, cities, and software, Simon and Schuster publishing, Scribner, pp. 1-350, ISBN: 978-0-74321-826-9 (eBook).
Jones, Jeff. (2015). A morphological adaptation approach to path planning inspired by slime mould, International Journal of General Systems, Vol. 44, No. 3, pp. 279–291, http://dx.doi.org/10.1080/03081079.2014.997526.
Karaboga, Dervis. (2005). An idea based on honey bee swarm for numerical optimization, Technical report-tr06, Erciyes university, engineering faculty, computer engineering department. Vol.6, pp. 1-10, doi: 10.1.1.714.4934.
Karaboga, Dervis, Basturk, Bahriye. (2007). a powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization, vol.39, p.459–471, https://doi.org/10.1007/s10898-007-9149-x.
Kaveh, Ali, Farhoudi, Neda. (2013). A new optimization method: Dolphin echolocation, Advances in Engineering Software, vol.59, pp.53–70, doi:10.1016/j.advengsoft.2013.03.004.
Kennedy, James. (2001).Swarm Intelligence, Handbook of Nature-Inspired and Innovative Computing, Kluwer Academic Publishers, Boston, pp.187–219, doi: 10.1007/0-387-27705-6_6.
Kennedy, James, Eberhart, Russell. (1995). Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, vol.2, pp.1942–1948.
Kunita, Itsuki, Yoshihara, Kazunori, Tero, Atsushi, Ito, Kentaro, Lee, Chiu Fan, Fricker, Mark, Nakagaki, Toshiyuki. (2013). Adaptive path-finding and transport network formation by the amoeba-like organism physarum, Natural Computing and Beyond, Springer, vol. 6, pp. 14–29, https://doi.org/10.1007/978-4-431-54394-7_2.
Leach, Neil. (2009). Swarm Urbanism, Architectural Design, vol. 79(4), pp. 56–63, doi:10.1002/ad.918.
Liu, Qin, Xu, Jianmin. (2012). Traffic Signal Timing Optimization for Isolated Intersections, Social and Behavioral Sciences, vol.43, pp.210-215, https://doi.org/10.1016/j.sbspro.2012.04.093.
Masutti, Thiago, De Castro, Leonardo. (2017). Bee-Inspired Algorithms Applied to Vehicle Routing Problems: A Survey and a Proposal, Mathematical Problems in Engineering, vol.2017, pp.1-20, https://doi.org/10.1155/2017/3046830.
Mirjalili, SeyedAli, Mirjalili, SeyedMohammad, Lewis, Andrew. (2014). Grey Wolf Optimizer, Advances in Engineering Software, vol.69, pp.46–61, doi:10.1016/j.advengsoft.2013. 12.007.
Monismith, David, Mayfield, Blayne. (2008). Slime Mold as a model for numerical optimization, Swarm Intelligence Symposium (IEEE), pp.1-8, doi:10.1109/SIS.2008.4668295.
Nakagaki, Toshiyuki, Lima, Makoto, Ueda, Tetsuo, Nishiura, Yasumasa, Saigusa, Tetsu, Tero, Atsushi, Kobayashi, Ryo, Showalter, Kenneth. (2007). Minimum-risk path finding by an adaptive amoeba network, Physical review letters, vol. 99, no. 6, p. 068104-1 - 068104-4.
Nakagaki, Toshiyuki. (2001). Smart behavior of true slime mold in a labyrinth, Research in Microbiology, vol. 152, no. 9, pp. 767–770, doi: https://doi.org/10.1016/S0923-2508(01)01259-1.
Nakagaki, Toshiyuki, Yamada, Hiroyasu, Toth, Agota. (2001). Path finding by tube morphogenesis in an amoeboid organism, Biophys Chem, vol.92, issu.1, pp.47–52, doi: 10.1016/s0301-4622(01)00179-x.
Parpinelli, Rafael, Lopes, Heitor. (2011). New inspirations in swarm intelligence: a survey, International Journal of Bio-Inspired Computation, vol.3, no.1, pp. 1-16, doi: 10.1504/IJBIC.2011.038700.
Passino, Kevin. (2002). Biomimicry of bacterial foraging for distributed optimization and control, Control Systems Magazine (IEEE), vol.22, no.3, pp.52–67, doi: 10.1109/MCS.2002.1004010.
Petrs, Jan. (2016). Application of Intelligence of Swarm in Architecture, Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR), IEEE, pp. 1-6, doi: 10.1109/ICAIPR.2016.7585202.
Rajakumar, BR. (2012). The Lion’s Algorithm: A New Nature-Inspired Search Algorithm, Procedia Technology, vol.6, pp.126–135, doi:10.1016/j.protcy.2012.10.016.
Reid, Chris, Latty, Tanya, Dussutour, Audrey, Beekman, Madeleine. (2012). Slime mold uses an externalized spatial “memory” to navigate in complex environments, Proceedings of the National Academy of Sciences, Vol. 109, No. 43, pp. 17490–17494, doi: 10.1073/pnas.1215037109.
Saigusa, T, Tero, Atsushi, Nakagaki, Toshiyuki, Kuramoto, Yoshiki. (2008). Amoebae anticipate periodic events, Physical Review Letters, vol. 100, pp. 018101-1 – 018101-4.
Seki, K, Kamimura, Y, Yamada, Y. (1998). Analysis methods of phase propagation in autonomic oscillation of physarum polycephalum, in Engineering in Medicine and Biology Society, Proceedings of the 20th Annual International Conference of the IEEE, vol. 3, pp. 1606– 1609, doi: 10.1109/IEMBS.1998.747208.
Song, Ziyi, Wu, Yunfa, Song, Jianhua. (2018). Application of ant colony Algorithm and particle swarm optimization in architectural design, IOP Conf. Ser.: Earth Environ, vol.113, pp.1-8, doi:10.1088/1755-1315/113/1/012172.
Stephenson, Steven, Stempen, Henry. (1994). Myxomycetes: A handbook of Slime Molds, Timber Press, Portland, ISBN: 0-881920439-3.
Tero, Atsushi. (2014). Models and applications of organism transportation, A Mathematical Approach to Research Problems of Science and Technology, Springer, vol. 5, pp. 141–150, doi: 10.1007/978-4-431-55060-0_11.
Tero, Atsushi, Kobayashi, Ryo, Nakagaki, Toshiyuki. (2005). A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds, Physica D: Nonlinear Phenomena, vol.205, no.1, pp.125–135, doi:10.1016/j.physd.2005.01.010.
Tero, Atsushi, Takagi, Seiji, Saigusa, Tetsu, Ito, Kentaro, Bebber, Dan, Fricker, Mark, Yumiki, Kenji, Kobayashi, Ryo, Nakagaki, Toshiyuki. (2010). Rules for biologically inspired adaptive network design, Science, vol. 327, pp. 439–442, doi: 10.1126/science.1177894.
Thukral, Sudeepta, Diwaker, Chander. (2017). Traveling Salesman Problem Using Various Optimization Techniques, American International Journal of Research in Science, Technology, Engineering & Mathematics, pp.50-54.
Yang, Xin Shi. (2010). A New Metaheuristic Bat-Inspired Algorithm, Studies in Computational Intelligence, Vol. 284, pp. 65–74, doi:10.1007/ 978-3-642-12538-6_6.
Yang, Xin Shi, Deb, Suash. (2010). Engineering optimisation by cuckoo search, International Journal of Mathematical Modelling and Numerical Optimisation, vol.1, no.4, pp.330, doi:10.1504/IJMMNO.2010.035430.
Yang, Xin Shi, He, Xingshi. (2013). Firefly algorithm: recent advances and applications, International Journal of Swarm Intelligence, vol.1, no.1, pp.36, doi: 10.1504/ IJSI.2013.055801.
Zedadra, Ouarda & Guerrieri, Antonio & Jouandeau, Nicolas & Spezzano, Giandomenico & Seridi, Hamid & Fortino,Giancarlo. (2018).Swarm intelligence-based algorithms within IoT-based systems: A review, J. Parallel Distil. Comput, vol.122, pp.173-187, https://doi.org/10.1016/j.jpdc.2018.08.007.
Zhao, Ruiqing, Tang, Wansheng. (2008). Monkey algorithm for global numerical optimization, Journal of Uncertain Systems, vol.2, no.3, pp.165–176.