سازمان ملی استاندارد ایران (1390)، استاندارد ملی ایران 14253: ساختمانهای مسکونی- تعیین معیار مصرف انرژی و دستورالعمل برچسب انرژی، چاپ اول، ویرایش اول، تهران: سازمان ملی استاندارد ایران.
سازمان ملی استاندارد ایران (1401)، استاندارد ملی ایران 14253: ساختمانهای مسکونی- تعیین معیار مصرف انرژی و دستورالعمل برچسب انرژی، تجدیدنظر اول، ویرایش اول، تهران: سازمان ملی استاندارد ایران.
مشیری، شهریار (1388)، طراحی پایدار بر مبنای اقلیم گرم و مرطوب، هویت شهر، 3(5)، 39-46. وزارت راه و شهرسازی، دفتر تدوین مقررات ملی ساختمان (1399)، مقررات ملی ساختمان ایران: مبحث نوزدهم؛ صرفهجویی در مصرف انرژی، تهران: مرکز تحقیقات راه، مسکن و شهرسازی.
ASHRAE (2007). ANSI/ASHRAE/IESNA Standard 90.1-2007 Energy Standard for Buildings Except Low-Rise Residential Buildings. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. https://www.ashrae.org/technical-resources/standards-and-guidelines. ASHRAE (2017). ANSI/ASHRAE Standard 55-2017 Thermal Environmental Conditions for Human Occupancy. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
https://www.ashrae.org/technical-resources/standards-and-guidelines.
Banihashemi, S., Golizadeh, H., Hosseini, M. R., & Shakouri, M. (2015). Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates. International Journal of Sustainable Built Environment, 4(2), 307-322. doi:https://doi.org/10.1016/j.ijsbe.2015.09.002
Binarti, F., Istiadji, A. D., Satwiko, P., & Iswanto, P. T. (2013). Interlayer and cavity contribution to creating high light-to-solar-gain-ratio glass block from waste glasses. International Journal of Sustainable Building Technology and Urban Development, 4(1), 82-88. doi:https://doi.org/10.1080/2093761X.2012.759891
Goia, F., Haase, M., & Perino, M. (2013). Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective. Applied energy, 108, 515-527. doi:https://doi.org/10.1016/j.apenergy.2013.02.063
Grondzik, W. T., & Kwok, A. G. (2019). Mechanical and electrical equipment for buildings. Hoboken, New Jersey: John wiley & sons.
Harmati, N., & Magyar, Z. (2015). Influence of WWR, WG and glazing properties on the annual heating and cooling energy demand in buildings. Energy Procedia, 78, 2458-2463. doi:https://doi.org/10.1016/j.egypro.2015.11.229
INBR. (2020). National building codes: topic 19: Energy saving (in Persian). Tehran: Road, Housing & Urban Development Research Center. Retrieved from
https://inbr.ir/?p=5798.
INSO. (2022). National standard of Iran (INSO 14253): Residential building- Criteria for energy consumption and energy labeling instruction (in Persian). 1st. Revision. Tehran: Iran National Standards Organization. Retrieved from
https://standard.inso.gov.ir/StandardView.aspx?Id=56975.
ISIRI. (2012). National standard of Iran (ISIRI 14253). Residential Building- Criteria for Energy Consumption and Energy Labeling Instruction (in Persian). 1st. Edition. Tehran: Institute of Standards and Industrial Research of Iran
https://standard.inso.gov.ir/StandardView.aspx?Id=36156.
ISO. (2005). ISO 7730:2005: Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Switzerland: International Organization for Standardization. Retrieved from
https://www.iso.org/standard/39155.html
Kempton, L., Daly, D., Kokogiannakis, G., & Dewsbury, M. (2022). A rapid review of the impact of increasing airtightness on indoor air quality. Journal of Building Engineering, 57, 104798. doi:https://doi.org/10.1016/j.jobe.2022.104798
Khoukhi, M., Darsaleh, A. F., & Ali, S. (2020). Retrofitting an existing office building in the UAE towards achieving low-energy building. Sustainability, 12(6), 2573. doi:https://doi.org/10.3390/su12062573
Lee, T. G., De Biasio, D., & Santini, A. (1996). Health and the built environment: Indoor air quality. Calgary, Alberta: The University of Calgary. Retrieved from
http://www.mtpinnacle.com/pdfs/iaq.pdf
Moshiri, S. (2009). Sustainable Design Based on Hot and Humid Climate (in Persian). Hoviatshahr, 3(5), 39-46. doi: 20.1001.1.17359562.1388.3.5.4.8
Saber, A. (2021). Effects of window-to-wall ratio on energy consumption: application of numerical and ANN approaches. Soft Computing in Civil Engineering, 5(4), 41-56. doi:https://dx.doi.org/10.22115/SCCE.2021.281977.1299
Sung, D. (2016). A new look at building facades as infrastructure. Engineering, 2(1), 63-68. doi:https://doi.org/10.1016/J.ENG.2016.01.008
Troup, L., Phillips, R., Eckelman, M. J., & Fannon, D. (2019). Effect of window-to-wall ratio on measured energy consumption in US office buildings. Energy and Buildings, 203, 109434.
doi:https://doi.org/10.1016/j.enbuild.2019.109434 Zhao, X., Yin, Y., He, Z., & Deng, Z. (2023). State-of-the-art, challenges and new perspectives of thermal comfort demand law for on-demand intelligent control of heating, ventilation, and air conditioning systems. Energy and Buildings, 113325. doi:https://doi.org/10.1016/j.enbuild.2023.113325
Zomorodian, Z. S., Tahsildoost, M., & Hafezi, M. (2016). Thermal comfort in educational buildings: A review article. Renewable and sustainable energy reviews, 59, 895-906. doi:https://doi.org/10.1016/j.rser.2016.01.033