نمای خورشیدی مدولار با مقاومت حرارتی بالا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پردیس هنرهای زیبا، دانشگاه تهران

2 استاد دانشکده معماری، پردیس هنرهای زیبا، دانشگاه تهران

3 استادیار فیزیک ساختمان، مرکز تحقیقات راه، مسکن و شهرسازی

چکیده

پیشگیری از اتلاف حرارت و استفاده از پتانسیلهای محیط، دو راهبرد اصولی در طراحی ساختمان با رویکرد صرفه جویی در مصرف انرژیهای تجدیدناپذیر است. با افزایش تراکم ساختمانی و کاهش نسبت سطوح بام و محوطه به سطح زیربنای ساختمان، امکان استحصال انرژی خورشیدی با روشهای متداول محدود شده است. درحالیکه مساحت نما، متناسب با سطح زیربنا و به تبع آن تقاضای انرژی میباشد. ضمن آنکه نصب تجهیزات خورشیدی روی سطوح افقی با پتانسیل عملکردی بالا، مداخله ای نامطلوب در معماری محسوب میشود.
در پژوهش حاضر، تعبیه تیغه های آلومینیومی جاذب پرتوهای خورشید، به شکل یک سایبان کرکره ای، درون یک محفظه شفافِ تحت خلأ با پوسته‌ی موجدار پیشنهاد میشود. خلأ، مقاومت حرارتی را تامین میکند. پوسته موجدار، تحمل نیروهای ناشی از خلأ را ممکن میسازد و برخلاف فرم مسطح، وابستگی بازدهی گردآور را به زاویه ارتفاع خورشید میکاهد. انتقال حرارت با فناوری لوله گرمایی، از عبور سیال از نما جلوگیری و نیاز به مراقبتهای تأسیساتی را برطرف میکند. جدار حاصل عایق حرارت بوده، امکان استحصال انرژی خورشیدی را در تمام سال برای گرمایش و سرمایش جذبی فراهم آورده و ضمن تأمین شفافیت و روشنایی ، سایه اندازی کامل دارد. شبیه سازی نرم افزاری حاکی از کارایی مطلوب جدار پیشنهادی میباشد.

کلیدواژه‌ها


عنوان مقاله [English]

MODULAR SOLAR FAÇADE WITH HIGH THERMAL RESISTANCE

نویسندگان [English]

  • Ahmad Askari Anaraki 1
  • Shahin Heidari 2
  • Behrouz Mohammad Kari 3
1 College of Fine Arts, University of Tehran
2 Professor, School of Fine Arts, University of Tehran, Tehran, Iran.
3 Assistant Professor, Road, Housing and Urban Development Research Center
چکیده [English]

Prevention from thermal losses in buildings and using environmental potentials such as solar energy, are two fundamental strategies in designing buildings with the approach of saving nonrenewable energy resources. As a border between the interior space and the environment, the building envelope plays a determining role in approaching these strategies. It is expected from the building’s envelope to mitigate unwanted energy dissipations and protect occupants from severe weather conditions. At the same time, a well-designed building envelope should provide the occupants’ comfort using environmental potentials, and ideally it may even take part in fulfilling energy demands.
The importance of energy harvesting in building envelops is more recognized in metropolises in which the growth of high-rise construction causes an intense decrease in the ratio of sun exposed horizontal surfaces such as roofs or yards to the area of floors. However, on the height of building and the overall area of floors -and followed by them, demand for energy- increases, the area of vertical surfaces such as facades, increases in a more appropriate proportion. Additionally, installing solar energy equipment on horizontal surfaces with high potential of functionality, is usually an undesirable interference in architecture.
From another point of view, conventional insulating stops the wall from transferring solar energy to the interior spaces. This research aims to make a convergence between high thermal resistance and solar energy collection. To achieve this, different methods of solar energy collection was reviewed. Due to the large angles between the sun’s altitude and the normal vector of southern façades, especially in summer days, a significant part of solar radiation is reflected from the cover glass surface of flat collectors. Non-glazed collectors, because of large amount of heat loss, have a low efficiency and like the conventional flat collectors, do not transfer the light and ban the transparency. However tubular evacuated solar collectors, if installed horizontally on southern façade, represent a circular section which is always perpendicular to the rays of sun, regardless of the altitude of radiation. So, solar reflection from glass cover of the collector, will no longer depend on the sun’s vertical position in the sky in different seasons. Also, the relative vacuum -made possible according to tubular form- decreases heat loss to a minimum. According to these two facts, this type results in an appropriate performance, which enables the envelope to provide a part of heating load and indirectly, cooling loads by supplying an absorption/adsorption chiller or a desiccant cooling machine.
The concept of the proposed system is a combination between the idea of tubular evacuated solar collector and vacuum transparent insulation. It consists of aluminum blades covered with a selectively solar absorbing coating, arrayed like a louver, surrounded by an evacuated glass container with corrugated skin. The result is a modular façade panel, with a high thermal resistance, which efficiently takes part in solar energy collecting and at the same time, acts as a louver to protect the interior spaces from direct solar radiation, while providing a relative visual transparency and daylight transmission.

کلیدواژه‌ها [English]

  • Solar façade
  • Tubular evacuated collector
  • Vacuum insulation
  • Solar heating and cooling
  • Heat Pipe

 

ASHRAE. (2008). HVAC systems and equipment: American Society of Heating, Refrigerating, and Air Conditioning Engineers, Atlanta, GA.
Beckman, W. A., & Duffie, J. A. (1980). Solar engineering of thermal processes: John Wiley and Sons.
Chen, C. J. (2011). Physics of solar energy. New Jersey: John Wiley & Sons.
Faghri, A. (1995). Heat pipe science and technology: Taylor & Francis.
IIED. (2010). Planning & Installing Solar Thermal Systems: Earthscan.
Lopez, P. B. C. (2011). Solar Thermal Collector in Facades. (MS), TU Delft.  
Quesada, G., Rousse, D., Dutil, Y., Badache, M., & Hallé, S. (2012a). A comprehensive review of solar facades. Opaque solar facades. Renewable and Sustainable Energy Reviews, 16(5), 2820-2832.
Quesada, G., Rousse, D., Dutil, Y., Badache, M., & Hallé, S. (2012b). A comprehensive review of solar facades. Transparent and translucent solar facades. Renewable and Sustainable Energy Reviews, 16(5), 2643-2651.
Simko, T., Elmahdy, A., & Collins, R. (1999). Determination of the overall heat transmission coefficient (U-value) of vacuum Glazing. ASHRAE Transactions, 105(pt 2), 1-9.
Thomas, R. (2012). Photovoltaics and architecture: Taylor & Francis.
Viessmann. (2008). Technical guide, Solar thermal systems. Viessman GmbH & Co KG.
URL1: VITOSOL 200-T. Retrieved 15/1/2019, from https://www.viessmann-us.com/en/residential/solar/ tube-collectors/ vitosol_200-t_spe.html
URL2: Solar Rating & Certification Corporation. Retrieved 1/1/2014, from www.solar-rating.com