واکاوی اثربخشی واقعیت‌افزوده‌مجازی بر تفکر سطح بالای دانشجویان معماری در درس طراحی فنی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه معماری، واحد ارومیه، دانشگاه آزاد.اسلامی، ارومیه، ایران.

چکیده

علی‌رغم تمامی تحولات در آموزش معماری، پرورش خلاقیت و تقویت توانایی‌های حل­مسئله همچنان به‌عنوان ارکان اصلی این حوزه باقی مانده­است. مطالعات مختلف نشان می­دهد درباره تاثیر فناوری­های­دیجیتال بر ارتقای خلاقیت و حل­مسئله دانشجویان معماری ابهام وجود دارد. این پژوهش، با رویکردی کاربردی و روش آمیخته-تشریحی، تأثیر بهره‌گیری از فناوری واقعیت­افزوده مجازی را بر تفکرات سطح بالای دانشجویان در درس طراحی­فنی بررسی کرده است. برای ارزیابی تفاوت‌ها بین دو گروه آزمایش و کنترل، از پرسشنامه ویلیامز و هوانگ استفاده شد. بخش کیفی پژوهش نیز از طریق مصاحبه نیمه‌ساختاریافته و مشاهده میدانی انجام گرفت. یافته‌ها نشان دادند که استفاده از این فناوری موجب شد گروه آزمایش در سه مؤلفه تفکر خلاق، یعنی حس­کنجکاوی، پنداره‌، و انعطاف‌پذیری، عملکردی چشمگیرتر از گروه کنترل داشته باشد. همچنین فناوری واقعیت­افزوده ضمن کاهش بارشناختی دانشجویان، توانایی حل­مسئله دانشجویان را ارتقا داد. مشاهدات و مصاحبه‌ها نیز تأیید کردند که واقعیت­افزوده از طریق عینی‌سازی مفاهیم، تسهیل فرآیند یادگیری، افزایش انگیزه و تقویت حس­کنجکاوی و تخیل، با کاهش تلاش ذهنی ابزار موثری در آموزش معماری به‌شمار می‌رود. با این وجود، چالش‌هایی نظیر کاهش تعاملات اجتماعی و ضعف در توسعه مهارت‌ها و تجربه عملی نیز به­همراه دارد. برای بهره‌وری بهینه، باید تعادلی میان استفاده از فناوری‌های نوین و روش‌های مرسوم آموزشی برقرار شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effectiveness of Virtual Augmented Reality on Higher-Order Thinking of Architecture Students in the Building Technical Design Course

نویسنده [English]

  • abbas sedaghati
Department of Architecture, Urmia Branch, Islamic Azad University, Urmia, Iran.
چکیده [English]

Despite the numerous transformations in architectural education over recent decades, fostering creativity and strengthening problem-solving abilities have remained the cornerstone of this discipline. There is ongoing debate in academic research about the impact of digital technologies, particularly their role in enhancing students' creative thinking and problem-solving skills. While digital tools promise innovation, their practical outcomes in education require careful investigation to determine their efficacy and address their limitations. This study adopts an applied approach with a mixed-method descriptive design to evaluate the influence of augmented reality (AR) technology on higher-order thinking skills among architecture students, specifically within a Building Technical Design course. To achieve this, the study incorporated both quantitative and qualitative research methods. A questionnaire was administered to compare differences in performance between the experimental group, which utilized AR technology, and the control group, which relied on conventional teaching methods. The qualitative phase included semi-structured interviews and field observations to provide deeper insights into the student experience and learning outcomes. The findings revealed that the use of augmented reality had a significant and positive impact on the creative thinking abilities of students in the experimental group. Specifically, AR technology enhanced three essential components of creative thinking: curiosity, imagination, and flexibility. Students demonstrated a greater ability to explore new ideas, visualize abstract concepts, and adapt their thinking to solve complex design problems. In contrast, the control group, which did not have access to AR, showed comparatively limited progress in these areas. The study also examined the relationship between AR technology and problem-solving skills. The results indicated that augmented reality improved the experimental group’s ability to identify, analyze, and resolve design challenges effectively. A notable finding was that AR reduced the cognitive load on students by offering immersive visualizations and tangible representations of abstract ideas. This reduction in mental effort enabled students to focus their energy on critical thinking and creative problem-solving processes, thereby achieving deeper learning outcomes. In addition to these benefits, qualitative observations and interviews confirmed that augmented reality provided a stimulating and engaging learning environment. By visualizing concepts in three dimensions, AR made complex architectural ideas more accessible, facilitating deeper understanding. Furthermore, the technology increased students' motivation, fostered a greater sense of curiosity, and strengthened their imaginative thinking, which are essential for nurturing creative design solutions. However, the study also identified key challenges associated with AR technology. One significant drawback was a noticeable reduction in social interactions among students. While AR promotes individual engagement, it can inadvertently limit collaborative learning experiences, which are crucial for teamwork and communication skills in architecture. Additionally, the reliance on virtual tools may impede the development of practical, hands-on skills and real-world experience that are fundamental to architectural practice. The research concludes that augmented reality is a powerful educational tool that can significantly enhance creativity, problem-solving abilities, and cognitive efficiency in architecture students. Nevertheless, to maximize its effectiveness, a balanced approach is necessary—integrating AR technology with conventional teaching methods that emphasize teamwork, practical skills, and experiential learning.

کلیدواژه‌ها [English]

  • Architectural Education
  • Building Technical Design
  • Creativity
  • Problem-Solving
  • Augmented Reality
  1. استراوس، انسلم و کربین، جولیت (1390). مبانی پژوهش کیفی- فنون و مراحل تولید نظریه زمینه‌ای. ترجمه ابراهیم افشار. نشر نی. امین رنجبر، مهناز (1380). تأثیر بازی شطرنج بر رشد مهارت حل‌مسئله دانش‌آموزان. پایان‌نامه کارشناسی ارشد، دانشگاه الزهرا. بازرگان، عباس (1387). ارزیابی آموزش. چاپ سوم. تهران: انتشارات سمت.

    پلوئی، لیلا (1400). تأثیر روش تدریس کاوشگری بر خلاقیت و انگیزه پیشرفت دانشجویان روانشناسی دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران. ابتکار و خلاقیت در علوم انسانی، 10(4)، 199-223. https://journal.bpj.ir/article_682695.html?lang=en

    رحمتی، رباب و کریمی، امیر (1401). مطالعه‌ی اسنادی تأثیر بازی های آموزشی بر خلاقیت کودکان دبستانی. ابتکار و خلاقیت در علوم انسانی، 12(2)، 29-50. https://sanad.iau.ir/en/Journal/ichs/Article/930627

    سیف، علی‌اکبر (1401). روانشناسی یادگیری و آموزش. تهران: انتشارات دوران.

    صداقتی، عباس و حجت، عیسی (1399). مقایسه میزان موفقیت دوره‌های آموزشی معماری پس از انقلاب فرهنگی. دوفصلنامه اندیشه معماری، 4(7)، 44-57. https://doi.org/10.30479/at.2020.11215.1268

    قاضی‌زاده فرد، مرجان‌السادات؛ ابوالمعالی حسینی، خدیجه؛ صابری، هایده و ابراهیمی مقدم، حسین (1402). طراحی و اعتبار سنجی برنامه آموزش خلاقیت برای کودکان پیش دبستانی. ابتکار و خلاقیت در علوم انسانی، 12(4)، 1-30. https://journal.bpj.ir/article_705006.html?lang=en

    مشعشعی، رزیتا؛ مقامی، حمیدرضا و زارعی‌زوارکی، اسماعیل (1398). تاثیر فناوری واقعیت افزوده با بهره گیری از مدل آموزشی مریل بر پیشرفت تحصیلی دانش آموزان. فصلنامه روانشناسی تربیتی، 15(51)، 127-145. https://doi.org/10.22054/jep.2019.36758.2454. مهتری آرانی، محمد؛ رجبیان ده‌زیره، مریم؛ باغبانی، ابوالفضل و ستوده آرانی، حسین (1397). تأثیر شبیه‌سازی آموزشی مبتنی بر رایانه بر بهزیستی ذهنی و یادگیری مادام العمر در دانش‌آموزان. راهبردهای آموزش در علوم پزشکی، 11(5)، 1-13. . http://edcbmj.ir/article-1-1652-fa.html

    1. Abdullah, F., Kassim, M. H. B., & Sanusi, A. N. Z. (2017). Go virtual: Exploring augmented reality application in representation of steel architectural construction for the enhancement of architecture education. Advanced Science Letters, 23(7), 804-808. https://doi.org/10.1166/ASL.2017.7449.
    2. 2. Ahmed, K. (2020). Integrating VR-enabled BIM in building design studios, architectural engineering program, UAEU: A pilot study. Advances in Science and Engineering Technology International Conferences (ASET), 6(1). https://doi.org/10.1109/ASET48392.2020.9118308.
    3. 3. Akcayir, M., & Akcayir, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11. https://doi.org/10.1016/j.edurev.2016.11.002.
    4. 4. Al-Ansi, A. M., Jaboob, M., Garad, A., & Al-Ansi, A. (2023). Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Social Sciences & Humanities Open, 8(1). https://doi.org/10.1016/j.ssaho.2023.100532.
    5. 5. Alein, F. (2018). Midwifery students' experiences of problem solving based interprofessional learning: A qualitative study. Women and Birth, 31(6), 374-379.
    6. 6. Alekhya, V., Sujin Jose, S., Lakhanpal, S., Khan, I., Paul, S., & Mohammad, Q. (2024). Integrating augmented reality in architectural design: A new paradigm. E3S Web of Conferences 505, 03009. https://doi.org/10.1051/e3sconf/202450503009.
    7. 7. Aljabr, H., & Ali, M. (2024). Integration of building information modeling and project management process. International Journal of BIM and Engineering Science. https://doi.org/10.54216/ijbes.080101.
    8. 8. Amin Ranjbar, M. (2001). The effect of chess play on students' problem solving skill development. [Unpublished master's thesis]. Al-Zahra University. [In Persian].
    9. 9. Amin, A., Rehman, M., Basri, S., Capretz, L. F., Goraya, M. A. S., & Akbar, R. (2023). The impact of stressors on the relationship between personality traits, knowledge collection behavior and programmer creativity intention in software engineering. Information and Software Technology, 107288. https://www.sciencedirect.com/science/article/pii/S0950584923001428.
    10. 10. Anindita, M. D., Krisna, A., Frengky, B. O., Natalia, S., & Nimas, S. (2022). Utilization of building design performance simulation in the architectural design studio process. ARTEKS: Jurnal Teknik Arsitektur, 7(2), 163-174. https://doi.org/10.30822/arteks.v7i2.1391.
    11. 11. Annafi, A., Hakim, D. L., & Rohendi, D. (2017). Impact of using augmented reality applications in the educational environment. Journal of Physics: Conference Series, 1375(1), 012080. IOP Publishing.
    12. 12. Bazargan, A. (2008). Assessment of training. Tehran: Samt Publishing [In Persian].
    13. 13. Bean, J. (2022). Reflections on the adoption of building performance simulation in architectural education. ASHRAE/IBPSA-USA Building Simulation Conference. https://doi.org/25746308.2022/10.26868.c044.
    14. 14. Beghetto, R. A., & Kaufman, J. C. (2007). Toward a broader conception of creativity: A case for ”mini-c” creativity. Psychology of Aesthetics, Creativity, and the Arts, 1(2), 73-79. https://doi.org/10.1037/1931-3896.1.2.73.
    15. 15. Benbelkacem, S., Zenati-Henda, N., Zerarga, F., Bellarbi, A., Belhocine, M., Malek, S., & Tadjine, M. (2011). Augmented Reality Platform for Collaborative E-Maintenance Systems. InTech. https://doi.org/10.5772/25868.
    16. 16. Bhaumik, R., Prajapati, S., Kumar, T., Bhalla, K., & Ashok, S. S. (2023). Smart vernacular Architecture: A framework for assessment and virtual reality-based visualisation of Indigenous toda Dwellings. Procedia Computer Science, 218, 651-670. https://doi.org/10.1016/j.procs.2023.01.047.
    17. 17. Calleia, A. M., & Howard, S. J. (2014). Assessing what students know: Effects of assessment type on spelling performance and relations to working memory. Student Engagement Education Matters, 4(1), 14-24. http://ro.uow.edu.au/jseem/vol4/iss1/3.
    18. 18. Cardellicchio, L., Stracchi, P., & Globa, A. (2024). Digital heritage construction: Testing the heritage value of construction documentation and building processes through Virtual Reality. Frontiers of Architectural Research. Available online April 27, 2024. https://doi.org/10.1016/j.foar.2024.02.012.
    19. 19. Chaisson, N. F., & Ashton, R. W. (2021). Virtual interviews and their effect on cognitive load for graduate medical education applicants and programs. ATS Scholar, 2(3), 309-316. http://10.34197/ats-scholar.2020-0156PS.
    20. 20. Chandrasekera, T. (2014). Using Augmented Reality Prototypes in Design Education. Design and Technology Education an International Journal, 19(3).
    21. 21. Chang, Y. S., Kao, J. Y., & Wang, Y. Y. (2022). Influences of virtual reality on design creativity and design thinking. Thinking Skills and Creativity, 46, 101127. https://doi.org/10.1016/j.tsc.2022.101127.
    22. 22. Cheng, L., Lau, L. K. P., & Pang, W.Y.J. (2024). Augmented reality book design for teaching and learning architectural heritage: Educational heritage in hong kong central and western district. Journal on Computing and Cultural Heritage, 17(4), 1-15. https://doi.org/10.1145/3655628.
    23. 23. Chiew, C. Y., & Alias, R. (2023). Enhancing problem-solving skills of architecture students through design studio pedagogy. International Journal of Technology and Design Education, 33(1), 1-16.
    24. 24. Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education (7th ed.). London: Routledge Falmer.
    25. 25. Conrad, M., Kablitz, D., & Schumann, S. (2024). Learning effectiveness of immersive virtual reality in education and training: A systematic review of findings. Computers & Education: X Reality, 4, 100053. https://doi.org/10.1016/j.cexr.2024.100053.
    26. 26. Darwish, M., Kamel, S., & Assem, A. (2023). Extended reality for enhancing spatial ability in architecture design education. Ain Shams Engineering Journal, 14(6). https://doi.org/10.1016/j.asej.2022.102104.
    27. 27. Das, A., Brunsgaard, C., & Madsen, C. B. (2022). Understanding the AR-VR based architectural design workflow among selected danish architecture practices. Education and research in Computer Aided Architectural Design in Europe, 1(1), 381-388. https://doi.org/10.52842/conf.ecaade.2022.1.381.
    28. 28. Diao, P., & Shih, N. (2019). Trends and research issues of augmented reality studies in architectural and civil engineering education- A review of academic journal publications. Applied Sciences, 9(9), 1840. https://doi.org/10.3390/app9091840.
    29. 29. Doehne, M., & Rost, K. (2021). Long waves in the geography of innovation: The rise and decline of regional clusters of creativity over time. Research Policy, 50(9), 104298. https://doi.org/10.1016/j.respol.2021.104298.
    30. 30. El Barhoumi, N., Hajji, R., Bouali, Z., Ben Brahim, Y., & Kharroubi, A. (2022). Assessment of 3D models placement methods in augmented reality. Applied Sciences. 12(20), 10620. https://doi.org/10.3390/app122010620.
    31. 31. Fonseca, D., Navarro, I., De Renteria, I., Moreira, F., Ferrer, Á., & De Reina, O. (2018). Assessment of wearable virtual reality technology for visiting world heritage buildings: An educational approach. Journal of Educational Computing Research, 56(6), 940-973. https://doi.org/10.1177/0735633117733995.
    32. 32. Fonseca, D., Marti, N., Navarro, I., Redondo, E., & Sanchez, A. (2012). Using augmented reality and education platform in architectural visualization: Evaluation of usability and student's level of sastisfaction. In 2012 International Symposium on Computers in Education, SIIE 2012 Article 6403157, 1-6.
    33. 33. Garzon, J., & Acevedo, J. (2019). A meta-analysis of the impact of augmented reality on students’ learning effectiveness. Educational Research Review. 27(1), 244-260. https://10.1016/j.edurev.2019.04.001.
    34. 34. Ghazizadeh Fard, M. A., Aboalmaali, K., Saberi, H., & Ebrahimi Moghaddam, H. (2023). Designing and validation of creativity training program for preschool children. Journal of Innovation and Creativity in Human Science, 12(4), 1-30. [In Persian]. https://journal.bpj.ir/article_705006.html?lang=en.
    35. 35. Guaman- Quintanilla, S., Everaert, P., Chiluiza, K., & Valcke, M. (2023). Impact of design thinking in higher education: A multi-actor perspective on problem solving and creativity. International Journal of Technology and Design Education, 33, 217–240. https://doi.org/10.1007/s10798-021-09724-z.
    36. 36. Guan, J. Q., Wang, L. H., Chen, Q., Jin, K., & Hwang, G. J. (2023). Effects of a virtual reality-based pottery making approach on junior high school students’ creativity and learning engagement. Interactive Learning Environments, 31(6), 2016-2032. https://doi.org/10.1080/10494820.2021.1871631.
    37. 37. Gutiérrez-González, S., Coello-Torres, C. E., Alameda, L., Calderon, V., Bravo, A. R. (2023). Incorporating collaborative online international learning (COIL) into common practices for architects and building engineers. International Journal of Learning, Teaching and Educational Research, 22(2), 20-36. https://doi.org/10.26803/ijlter.22.2.2.
    38. 38. Horst, R., Fenchel, D., Retz, R., Rau, L., Retz, W., & Dorner, R. (2020). Integration of Game Engine Based Mobile Augmented Reality Into a Learning Management System for Online Continuing Medical Education. Conference: Smart Systems for Better Living Environments. https://10.18420/inf2020_88.
    39. 39. Huang, L., & Musah, A. A. (2024). The influence of augmented reality on creativity, student behavior, and pedagogical strategies in technology-infused education management. Journal of Pedagogical Research, 32(1), 1-18. https://doi.org/10.33902/jpr.202425376.
    40. 40. Huri, A. S., Chintamani, A., & Cutting, K. (2024). The impact of augmented reality on teaching and learning in the educational context: exploring its pedagogical implications. Educational Administration: Theory and Practice, 30(5), 8057–8062. https://doi.org/10.53555/kuey.v30i5.3902.
    41. 41. Ibrahim, R., & Pour Rahimian, F. (2010). Comparison of CAD and manual sketching tools for teaching architectural design. Automation in Construction, 19(7), 978–987. https://:10.1016/j.autcon.2010.09.003.
    42. 42. Kalyuga, S. (2009). Managing cognitive load in adaptive multimedia learning. In P. A. Kirschner (Ed.), Psychology of learning and motivation, 55, 198-216. Academic Press.
    43. 43. Kee, T., Kuys, B., & King, R.. (2024). Generative artificial intelligence to enhance architecture education to develop digital literacy and holistic competency. Journal of Artificial Intelligence in Architecture, 3(1), 24-41. https://doi.org/10.24002/jarina.v3i1.8347.
    44. 44. Kong, S. C., Chan, T. W., Griffin, P., Hoppe, U., Huang, R., Kinshuk, Looi, C. K., Milrad, M., Norris, C., Nussbaum, M., & Sharples, M. (2014). E-learning in school education in the coming 10 years for developing 21st century skills: Critical research issues and policy implications. Journal of Educational Technology & Society, 17(1), 70–78.
    45. 45. Lage-Gomez, C., & Ros, G. (2024). On the interrelationships between diverse creativities in primary education STEAM projects. Thinking Skills and Creativity, 51, 101456. https://doi.org/https://www.sciencedirect.com/science/article/pii/S1871187123002237.
    46. 46. Langsdorf, L. (2016). From interrelational ontology to instrumental ethics: Expanding pragmatic postphenomenology. Techne: Research in Philosophy and Technology, 20(2), 112-128. https://10.5840/techne20168857.
    47. 47. Laovisutthichai, V., Srihiran, K., & Lu, W. (2022). Towards greater integration of building information modeling in the architectural design curriculum: A longitudinal case study. Industry and Higher Education, 37, 265-278. https://doi.org/ 00504222221120165/10.1177.
    48. 48. Lee, J. H., Yang, E. K., & Sun, Z. Y. (2019). Design cognitive actions stimulating creativity in the VR design environment. In Proceedings of the 2019 Creativity and Cognition, 604-611. https://doi.org/10.1145/3325480.3326575
    49. 49. Lin, Y. J., & Wang, H. C. (2021). Using virtual reality to facilitate learners’ creative self-efficacy and intrinsic motivation in an EFL classroom. Education Information Technology, 26, 4487–4505. https://doi.org/10.1007/s10639-021-10472-9.
    50. 50. Mahdi, D. S., Ahmed, M. A., & Rasheed, F. H. (2021). The role of job satisfaction in developing administrative performance and creativity: An empirical study in Iraq. The Journal of Asian Finance, Economics and Business, 8(6), 465-473. https://www.researchgate.net/profile/Dalal-Mahdi/publication/355410679.
    51. 51. Marozzo, V., Crupi, A., Abbate, T., Cesaroni, F., & Corvello, V. (2024). The impact of watching science fiction on the creativity of individuals: The role of STEM background. Technovation, 132, 102994. https://www.sciencedirect.com/science/article/pii/S0166497224000440.
    52. 52. Matusiak, B., & Sudbo, B. (2008). Width or height? Which has the strongest impact on the size impression of rooms? Results from full-scale studies and computer simulations. Architectural Science Review, 51, 165-172. https://doi.org/10.3763/asre.2008.5120.
    53. 53. Mehtari Arani, M., Rajabian Deh Jadeh, M., Horticulture, A., & Sotoudeh Arani, H. (2018). The impact of computer-based educational simulation on students' subjective well-being and lifelong learning. Journal of Medical Education Strategies, 11(5), 1-13. [In Persian]. http://edcbmj.ir/article-1-1652-fa.html.
    54. 54. Mekni, M., & Lemieux, A. (2014). Augmented reality: Applications, challenges and future trends. Applied Computational Science, 8(4), 205-214.
    55. 55. Moshashaei, R., Maghami, H., & Zarei Zavaraki, E. (2019). Investigating the effect of augmented reality using the merrill educational design model on students' academic achievement. Quarterly of educatinal psychology, 15(51), 127-145. [In Persian]. https://doi.org/10.22054/jep.2019.36758.2454. 56. Ning, H., Daisaku, N., So, S., Rui, J., Sayaka, K., Hiroshi, O., & Akihiro, S. (2024). Virtual reality space in architectural design education: Learning effect of scale feeling. Building and Environment, 248. https://doi.org/10.1016/j.bui
    56. denv.2023.111060.
    57. 57. Omar, O., El Messeidy, R., & Youssef, M. (2016). Impact of 3D simulation modeling on architectural design education. Architecture and Planning Journal (APJ, 23(2)). https://www.researchgate.net/publication/298854347.
    58. 58. Ozenen, G. (2022). Enhancing engagement and learning outcomes in architectural computing design education: A study on the implementation of augmented reality. PRESENCE: Virtual and Augmented Reality, 31(2), 245-256. https://doi.org/10.1162/pres_a_00396.
    59. 59. Parong, J., & Mayer, R. E. (2021). Cognitive and affective processes for learning science in immersive virtual reality. Journal of Computer Assisted Learning, 37(3), 226-241. https://doi.org/10.1111/jcal.12482.
    60. 60. Piana, A., Amparore, D., Sica, M., Volpi, G., Checcucci, E., Piramide, F., De Cillis, S., Busacca, G., Scarpelli, G., Sidoti, F., Alba, S., Piazzolla, P., Fiori, C., Porpiglia, F., & Di Dio, M. (2024). Automatic 3D Augmented-Reality Robot-Assisted Partial Nephrectomy Using Machine Learning: Our Pioneer Experience. Cancers, 16(5), 1047. https://doi.org/10.3390/cancers16051047
    61. 61. Poloie, L. (2021). The effectiveness of inquiry-based teaching method on creativity and achievement motivation among psychology students of Islamic Azad University Science and Research Branch, Tehran. Journal of Innovation and Creativity in Human Science, 10(4), 199-223. [In Persian]. https://journal.bpj.ir/article_682695.html?lang=en
    62. 62. Porat, R., & Ceobanu, C. (2024). Enhancing spatial ability: A new integrated hybrid training approach for engineering and architecture students. Education Sciences, 14(6), 563. https://doi.org/10.3390/educsci14060563.
    63. 63. Poulsen, S. B., & Thogersen, U. (2011). Embodied design thinking: A phenomenological perspective. CoDesign, 7(1), 29-44.
    64. 64. Puggioni, M., Frontoni, E., Paolanti, M., & Pierdicca, R. (2021). ScoolAR: An educational platform to improve students’ learning through virtual reality. IEEE Access, 9, 21059-21070. https://10.1109/ACCESS.2021.3051275.
    65. 65. Rahmati, R., & Karimi, A. (2022). Documentary study of the effect of play on the creativity of primary school children. Journal of Innovation and Creativity in Human Science, 12(2), 29-50. [In Persian]. https://sanad.iau.ir/en/Journal/ichs/Article/930627.
    66. 66. Roffey, H., MacDonald, K., Ingerman, J., & Kingsmill, P. (2020). Developing 21st century skills with online curation and social annotation. Vanier Academic Voices, 3(1).
    67. 67. Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92-96. https://10.1080/10400419.2012.
    68. 68. Saif, A. A. (2022). Learning psychology and teaching. Tehran: Doran Publication. [In Persian].
    69. 69. Schnotz, W., Fries, S., & Horz, H. (2009). Motivational aspects of cognitive load theory. In R. M. Ryan (Ed.), Contemporary motivation research: From global to local perspectives, 69-96. Guilford Publications.
    70. 70. Sedaghati, A., & Hojat, I. (2020). Comparison of the success rate of educational courses after the Cultural Revolution. Journal of Architectural Thought, 4(7). [In Persian]. https://doi.org/10.30479/AT.2020.11215.1268.
    71. 71. Sinnamon, C., & Miller, E. (2022). Architectural concept design process impacted by body and movement. International Journal of Technology and Design Education, 32(36), 1079-1102. https://10.1007/s10798-020-09636-4 72. Siu Shing, M., Huiying, W., Billy, C., & Lung, S. (2024). Are virtual reality applications effective for construction safety training and education? A systematic review and meta-analysis. Journal of Safety Research, 88, 230-243. https://doi.org/10.1016/j.jsr.2023.11.011.
    72. 73. Sivapriyan, R., Raj, L., Selvi, T., Raj, G. (2024). Review on augmented reality in civil engineering education and application [Review of research on AR in Engineering Education]. 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), 1-5. https://doi.org/10.1109/IITCEE59897.2024.10467346.
    73. 74. Soltis, N. A., McNeal, K. S., Mcneal, K., Atkins, R. M., Maudlin, L. C., Maudlin, L. C. (2020). A novel approach to measuring student engagement while using an augmented reality sandbox. Journal of Geography in Higher Education, 44(4), 512-531. https://doi.org/10.1080/03098265.2020.1771547
    74. 75. Strauss, A., & Corbin, J. (2011). Basics of qualitative research. Newbury Park, CA: Sage.
    75. 76. Sweller, J. (2011). Cognitive load theory. In R. E. Mayer (Ed.), Psychology of learning and motivation. Academic Press, 55, 37-76.
    76. 77. Taherysayah, F., Malathouni, C., Liang, H. N., & Westermann, C. (2024). Virtual reality and electroencephalography in architectural design: A systematic review of empirical studies. Journal of Building Engineering, 85. https://doi.org/10.1016/j.jobe.2024.108611.
    77. 78. Urban, H., Pelikan, G., & Schranz, C. (2022). Augmented Reality in AEC Education: A Case Study [Focuses on AR in Architecture, Engineering, and Construction education]. Buildings, 12(4), 391. https://doi.org/10.3390/buildings12040391.
    78. 79. Vassigh, S., et al. (2018). Teaching building sciences in immersive environments: A prototype design, implementation, and assessment. International Journal of Construction Education and Research, 16(2), 180-196. https://doi.org/10.1080/15578771.2018.1525445.
    79. 80. Wahadamaputera, S., Subekti, B., Permata, D. D. (2021). Application of digital structure simulation as a tool for the exploration of wide span structure ideas. MODUL, 21(2), 155-161. https://doi.org/10.14710/mdl.21.2.2021.155-161.
    80. 81. Widiaty, I., Yulia, C., & Abdullah, A. G. (2022). The application of virtual reality (VR) in vocational education. In 4th International Conference on Innovation in Engineering and Vocational Education (ICIEVE 2021), Atlantis Press, 112-120.
    81. 82. Wu, Y.C., & Liao, W.H. (2020). Analysis of Learning Patterns and Performance—A Case Study of 3-D Modeling Lessons in the K-12 Classrooms. IEEE Access 2020, 8, 186976–186992. https://doi.org/10.1109/ACCESS.2020.3029947.
    82. 83. Xu, W., Geng, F., & Wang, L. (2022). Relations of computational thinking to reasoning ability and creative thinking in young children: Mediating role of arithmetic fluency. Thinking Skills and Creativity, 44, 101041. https://doi.org/10.1016/j.tsc.2021.101041.
    83. 84. Xue, Z., Ying, L., & Jianing, S. (2021). The effectiveness of simulation in teaching problem-solving skills: A systematic review and meta-analysis. International Journal of Educational Research, 135, 106123. https://linkinghub.elsevier.com/retrieve/pii/S1936878X20305155.
    84. 85. Yu, H., & Wang, L. (2023). A study on the cultivation of architectural students' problem-solving ability based on BIM technology. International Journal of Construction Management, 13(2), 409-420. https://doi.org/10.1016/j.tsc.2022.101041.